【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求證函數(shù)在上是增函數(shù).
(2)若函數(shù)在上有兩個(gè)不同的零點(diǎn),求的取值范圍.
【答案】(1)證明見解析;(2)
【解析】
(1)分別求得一階導(dǎo)和二階導(dǎo),由二階導(dǎo)的正負(fù)可確定一階導(dǎo)的單調(diào)性,從而得到,確定恒大于等于零,由此可得結(jié)論;
(2)將問題轉(zhuǎn)化為與有兩個(gè)不同交點(diǎn)的問題;利用導(dǎo)數(shù)可確定的單調(diào)性,得到的圖象,利用數(shù)形結(jié)合的方式求得結(jié)果.
(1)當(dāng)時(shí),,則,
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞減,在上單調(diào)遞增
且不恒等于 在上是增函數(shù)
(2)函數(shù)在在有兩個(gè)不同的解,即在有兩個(gè)不同的解
令,則問題等價(jià)于與有兩個(gè)不同交點(diǎn)
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞減,在上單調(diào)遞增
由此可得圖象如下圖所示:
由圖象可知,當(dāng)時(shí),與有兩個(gè)不同交點(diǎn)
時(shí),在上有兩個(gè)不同的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費(fèi)為元,設(shè)備乙每天的租賃費(fèi)為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費(fèi)最少為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個(gè)圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)B坐標(biāo)為(4,3),點(diǎn)C坐標(biāo)為(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 當(dāng)0≤ t ≤1時(shí),求直線CM的斜率k和傾斜角θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與向量的對(duì)應(yīng)關(guān)系用表示.
(1) 證明:對(duì)于任意向量、及常數(shù)m、n,恒有;
(2) 證明:對(duì)于任意向量,;
(3) 證明:對(duì)于任意向量、,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn).
(Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說明理由;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,、分別為邊、的中點(diǎn),沿將折起,點(diǎn)折至處(與不重合),若、分別為線段、的中點(diǎn),則在折起過程中( )
A.可以與垂直
B.不能同時(shí)做到平面且平面
C.當(dāng)時(shí),平面
D.直線、與平面所成角分別為、,、能夠同時(shí)取得最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABCD,四邊形ABCD是矩形,,,點(diǎn)F為PB中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(Ⅰ)求證:PD∥平面AFC;
(Ⅱ)若,求證:;
(Ⅲ)若二面角的大小為60°,則CE為何值時(shí),三棱錐的體積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為,離心率,直線交橢圓于、兩點(diǎn).
(1)若直線的方程為,求弦的長(zhǎng);
(2)如果的重心恰好為橢圓的右焦點(diǎn),求直線方程的一般式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com