【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),
(1)求橢圓的方程.
(2)當(dāng)時(shí),求的面積.
【答案】(1)(2)
【解析】
(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.
(1)因?yàn)橹本過(guò)點(diǎn),且斜率.
所以直線的方程為,即,
所以圓心到直線的距離為,
又因?yàn)?/span>,圓的半徑為,
所以,即,
解之得,或(舍去).
所以,
所以所示橢圓的方程為 .
(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,
則點(diǎn)到右準(zhǔn)線的距離為,
所以,即,把代入橢圓方程得,,
因?yàn)橹本的斜率,
所以,
因?yàn)橹本經(jīng)過(guò)和,
所以直線的方程為,
聯(lián)立方程組得,
解得或,
所以,
所以的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng),時(shí),求函數(shù)的最小值;
(2)當(dāng),時(shí),求證方程在區(qū)間上有唯一實(shí)數(shù)根;
(3)當(dāng)時(shí),設(shè)是函數(shù)兩個(gè)不同的極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰直角三角形中,,,、分別是,上的點(diǎn),,為的中點(diǎn),將沿折起,得到如圖2所示的四棱錐,其中.
(1)證明:平面;
(2)求二面角的平面角的余弦值;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角三角形的外接圓半徑是,點(diǎn),,分別在邊,,上。求證:,,是的三條高的充要條件是,式中是的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)滿足:①對(duì)于任意的都有成立;②當(dāng)時(shí),;③;則不等式的解集為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn),圓
(1)求過(guò)點(diǎn)的圓的切線方程;
(2)求過(guò)點(diǎn)的圓的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的偶函數(shù),對(duì)任意都有,當(dāng),且時(shí),,給出如下命題:
①;
②直線是函數(shù)的圖象的一條對(duì)稱(chēng)軸;
③函數(shù)在上為增函數(shù);
④函數(shù)在上有四個(gè)零點(diǎn).
其中所有正確命題的序號(hào)為( )
A. ①② B. ②④ C. ①②③ D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家提出的“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”的號(hào)召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專(zhuān)業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬(wàn)元,每年生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本為萬(wàn)元,且,每件產(chǎn)品售價(jià)為10元。經(jīng)市場(chǎng)分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;
(注:年利潤(rùn)=年銷(xiāo)售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬(wàn)件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶只需以運(yùn)動(dòng)手環(huán)或手機(jī)協(xié)處理器的運(yùn)動(dòng)數(shù)據(jù)為介,然后關(guān)注該公眾號(hào),就能看見(jiàn)自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機(jī)選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 10000以上 | ||||
男生人數(shù)/人 | 1 | 2 | 7 | 15 | 5 |
女性人數(shù)/人 | 0 | 3 | 7 | 9 | 1 |
規(guī)定:人一天行走的步數(shù)超過(guò)8000步時(shí)被系統(tǒng)評(píng)定為“積極性”,否則為“懈怠性”.
(1)填寫(xiě)下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認(rèn)為“評(píng)定類(lèi)型與性別有關(guān)”;
積極性 | 懈怠性 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)為了進(jìn)一步了解“懈怠性”人群中每個(gè)人的生活習(xí)慣,從步行數(shù)在的人群中再隨機(jī)抽取3人,求選中的人中男性人數(shù)超過(guò)女性人數(shù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com