13.已知 x,y∈(-1,1),則$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$的最小值為$4\sqrt{2}$.

分析 由題意,$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$表示(x,y)與(-1,1),(-1,-1),(1,-1),(1,1)的距離的和,根據(jù)圖形的對稱性,即可得出結(jié)論.

解答 解:由題意,$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$表示(x,y)與(-1,1),(-1,-1),(1,-1),(1,1)的距離的和,顯然點(diǎn)在原點(diǎn)時(shí),距離和最小,最小為$4\sqrt{2}$.
故答案為$4\sqrt{2}$.

點(diǎn)評 本題考查距離公式的運(yùn)用,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時(shí)間的情況,從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天在家的時(shí)間(在家時(shí)間在4小時(shí)以上的就認(rèn)為具有“宅”屬性,否則就認(rèn)為不具有“宅”屬性)
具有“宅”屬性不具有“宅”屬性總計(jì)
男生205070
女生104050
總計(jì)3090120
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“是否具有‘宅’屬性與性別有關(guān)?”
(2)采用分層抽樣的方法從具有“宅”屬性的學(xué)生里抽取一個6人的樣本,其中男生和女生各多少人?從6人中隨機(jī)選取3人做進(jìn)一步的調(diào)查,求選取的3人至少有1名女生的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0245.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.曲線y=x3-2x+m在x=1處的切線的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x-1-lnx.
(1)求函數(shù)f(x)的極值;
(2)對?x>0,f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$cos(\frac{5π}{2}+α)=\frac{3}{5}$,$-\frac{π}{2}<α<0$,則sin2α的值是-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,4,5,6,7},則A∩(∁UB)=( 。
A.{1,2}B.{3,4}C.{5,6,7}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.大衍數(shù)列,來源于中國古代著作《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論.其前10項(xiàng)為:0、2、4、8、12、18、24、32、40、50.通項(xiàng)公式:an=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2},n為奇數(shù)}\\{\frac{{n}^{2}}{2},n為偶數(shù)}\end{array}\right.$,如果把這個數(shù)列{an}排成如圖形狀,并記A(m,n)表示第m行中從左向右第n個數(shù),則A(10,4)的值為(  )
A.1200B.3612C.3528D.1280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在矩形ABCD中,M是BC的中點(diǎn),N是CD的中點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,則λ+μ=( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+ax,g(x)=x•ex+a
(1)若對于任意的實(shí)數(shù)x,都有f(x)≥1,求實(shí)數(shù)a的取值范圍;
(2)令F(x)=[g(x)-f(x)],且實(shí)數(shù)a≠0,若函數(shù)F(x)存在兩個極值點(diǎn)x1,x2,證明:0<e2F(x1)<4且0<e2F(x2)<4.

查看答案和解析>>

同步練習(xí)冊答案