分析 根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系進行求解即可.
解答 解:∵函數(shù)y=f(x+1)的定義域為[1,3],
∴1≤x≤3,則2≤x+1≤4,
由2≤x2≤4,得-2≤x≤-$\sqrt{2}$或$\sqrt{2}$≤x≤2,
即函數(shù)f(x2)的定義域為[-2,-$\sqrt{2}$]∪[$\sqrt{2}$,2],
故答案為:[-2,-$\sqrt{2}$]∪[$\sqrt{2}$,2]
點評 本題主要考查函數(shù)定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | [0,+∞) | C. | (0,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | [-1,1] | C. | (-1,1) | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x+1 | B. | y=|x| | C. | $y=\frac{1}{x}$ | D. | $y=\frac{1}{{{x^2}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $-\frac{1}{2}$ | C. | 1或$-\frac{1}{2}$ | D. | -1或$-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com