18.如圖所示多面體中,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°
(Ⅰ)作出題中多面體的三視圖,并標出相應長度
(Ⅱ)求證:AC⊥平面BDE
(Ⅲ)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

分析 (I)根據(jù)∠DBE=60°計算DE,再作出三視圖即可;
(II)由DE⊥平面ABCD得出DE⊥AC,結(jié)合BD⊥AC得出AC⊥平面BDE;
(III)利用平行線等分線段成比例定理即可得出M為BD的三等分點,再給出證明即可.

解答 解:(Ⅰ)作出三視圖如圖所示:


(Ⅱ)證明:因為DE⊥平面ABCD,AC?平面ABCD,
所以DE⊥AC.
因為底面ABCD是正方形,
所以AC⊥BD,又BD∩DE=D,BD,DE?平面BDE,
∴AC⊥平面BDE.
(Ⅲ)解:在BE上取得N,在BD上取點M,使得$\frac{BM}{BD}=\frac{BN}{BE}=\frac{1}{3}$,
連結(jié)MN,F(xiàn)N,AM,
則MN∥DE,$\frac{MN}{DE}$=$\frac{1}{3}$,又AF∥DE,AF=$\frac{1}{3}$DE,
∴AF$\stackrel{∥}{=}$MN,
∴四邊形AMNF是平行四邊形,
∴AM∥FN,又FN?平面BEF,AM?平面BEF,
∴AM∥平面BEF.
∴當M為BD靠近B的三點分點時,AM∥平面BEF.

點評 本題考查了棱錐的結(jié)構(gòu)特征和三視圖,線面垂直、平行的判定,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.連接直角三角形的直角頂點與斜邊的兩個三等分點,所得線段的長分別為sinα和cosα$(0<α<\frac{π}{2})$,則斜邊長是$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知A、B、C的坐標分別為A(4,0),B(0,4),C(3cosα,3sinα)
(1)若α∈(-π,0)且$\overrightarrow{|{AC}|}=\overrightarrow{|{BC}|}$,求角α的值;
(2)若$\overrightarrow{AC}•\overrightarrow{BC}=0$,求$\frac{{2{{sin}^2}α+2sinαcosα}}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.等差數(shù)列{an}中,已知a4=-4,a8=4,則a12=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.關(guān)于直線a,b,c以及平面α,β,給出下列命題:
①若a∥α,b∥α,則a∥b
②若a∥α,b⊥α,則a⊥b
③若a?α,b?α,且c⊥a,c⊥b,則c⊥α
④若a⊥α,a∥β,則α⊥β
其中正確的命題是( 。
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=2x3-ax2+8.
(1)若f(x)<0對?x∈[1,2]恒成立,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)g(x)=f(x)+4ax2-12a2x+3a3-8在區(qū)間(0,1)上存在極小值,若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.不等式lnx+x-1<0的解集為(  )
A.$(0,\frac{e}{4})$B.$(0,\frac{e}{2})$C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)$f(x)=tanx+\frac{1}{tanx}$,若f(α)=5,則f(-α)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC,三內(nèi)角 A,B,C的對邊分別為a,b,c,已知A=30°,$b=\sqrt{3},a=1$,則c=1或2.

查看答案和解析>>

同步練習冊答案