17.用紅、黃、藍(lán)三種顏色去涂圖中標(biāo)號為1,2…9的9個小正方形,使得任意相鄰(有公共邊)的小正方形所涂顏色都不相同,且標(biāo)號為“3,5,7”的小正方形涂相同的顏色,則符合條件的所有涂法共有( 。┓N
123
456
789
A.18B.36C.72D.108

分析 分析圖形中的3,5,7,有3種可能,當(dāng)3,5,7,為其中一種顏色時,共6種可能,即可得出結(jié)論

解答 解:首先看圖形中的3,5,7,有3種可能,
當(dāng)3,5,7,為其中一種顏色時,2,6共有4種可能,其中2種2,6是涂相同顏色,各有2種可能,共6種可能.
4,8及9,與2,6及1,一樣有6種可能并且與2,6,1,顏色無關(guān).
當(dāng)3,5,7換其他的顏色時也是相同的情況
符合條件的所有涂法共有3×6×6=108種,
故選:D.

點(diǎn)評 本題是一個排列組合的應(yīng)用,考查分別計(jì)數(shù)原理,考查分類原理,是一個限制元素比較多的題目,解題時注意分類,做到不重不漏,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“?n∈N*,$\frac{1}{n}$>$\frac{1}{n+1}$”的否定為( 。
A.?n∈N*,$\frac{1}{n}$≤$\frac{1}{n+1}$B.?n∈N*,$\frac{1}{n}$<$\frac{1}{n+1}$
C.?n∈N*,$\frac{1}{{n}_{0}}$≤$\frac{1}{{n}_{0}+1}$D.?n0∈N*,$\frac{1}{{n}_{0}}$<$\frac{1}{{n}_{0}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知不重合的直線m、l和平面α、β,m⊥α,l?β,則α∥β是“m⊥l”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲乙兩名籃球運(yùn)動員近幾場比賽得分統(tǒng)計(jì)成莖葉圖如圖,甲乙兩人的平均數(shù)與中位數(shù)分別相等,則x:y為( 。
A.3:2B.2:3C.3:1或5:3D.3:2或7:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某校高二(1)班一次階段考試數(shù)學(xué)成績的莖葉圖和頻率分布直方圖可見部分如圖,根據(jù)圖中的信息,可確定被抽測的人數(shù)及分?jǐn)?shù)在[90,100]內(nèi)的人數(shù)分別為( 。
A.20,2B.24,4C.25,2D.25,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.北京時間3月4日,CBA半決賽第四場,遼寧男籃客場戰(zhàn)勝廣東,總比分3:1淘汰對手緊急總決賽,遼寧與四川會師決賽,總決賽3月11日開打,采用7局4勝制(若某隊(duì)取勝四場,則終止比賽,并獲得本賽季冠軍)采用2-3-2的賽程,由于遼寧常規(guī)賽占優(yōu),決賽時擁有主場優(yōu)勢(遼寧先兩個主場,然后三個客場,再兩個主場)以下是總決賽賽程:
 日期 比賽隊(duì) 主場 客場 比賽時間 比賽地點(diǎn)
 3月11日 遼寧-四川 遼寧 四川 19:35 本溪
 3月13日 遼寧-四川 遼寧 四川 19:35 本溪
 3月16日 四川-遼寧 四川 遼寧 19:35 成都
 3月18日 四川-遼寧 四川 遼寧 19:35 成都
 3月20日 四川-遼寧 四川 遼寧 19:35 成都
 3月23日 遼寧-四川 遼寧 四川 19:35 本溪
 3月25日 遼寧-四川 遼寧 四川 19:35 本溪
(1)若考慮主場優(yōu)勢,每個隊(duì)主場獲勝的概率均為$\frac{2}{3}$,客場取勝的概率均為$\frac{1}{3}$,求遼寧隊(duì)以比分4:1獲勝的概率;
(2)若不考慮主場優(yōu)勢,每個隊(duì)每場比賽獲勝的概率均為$\frac{1}{2}$設(shè)本次決賽的比賽場數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某次考試中,全部考生參加了“科目一”和“科目二”兩個科目的考試,每科成績分為A,B,C,D,E五個等級.某考場考生的兩顆考試成績數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“科目一”成績?yōu)镈的考生恰有4人.
(1)分別求該考場的考生中“科目一”和“科目二”成績?yōu)锳的考生人數(shù);
(2)已知在該考場的考生中,恰有2人的兩科成績均為A,在至少一科成績?yōu)锳的考生中隨機(jī)抽取2人進(jìn)行訪談,設(shè)這2人中兩科成績均為A的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐A-BCDE中,AB=BCC,BE=$\frac{1}{2}$CD.CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:面ADE⊥面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三角形的三邊之長為2a+3,a2+3a+3,a2+2a,其中a>0,則此三角形的最大角為120°.

查看答案和解析>>

同步練習(xí)冊答案