12.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),若(sinC)•$\overrightarrow{AC}$+(sinA)•$\overrightarrow{PA}$+(sinB)•$\overrightarrow{PB}$=$\overrightarrow{0}$,則△ABC的形狀為( 。
A.等邊三角形B.鈍角三角形C.直角三角形D.等腰直角三角形

分析 用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{PA}$,$\overrightarrow{PB}$,代入條件式整理,根據(jù)平面向量的基本定理可得$\overrightarrow{AB},\overrightarrow{AC}$的系數(shù)均為0,得出sinA,sinB,sinC的關(guān)系.

解答 解:∵$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),∴$\overrightarrow{PA}$=-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$,$\overrightarrow{PB}$=$\overrightarrow{PA}+\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AB}-$$\frac{1}{2}$$\overrightarrow{AC}$,
(sinC)•$\overrightarrow{AC}$+(sinA)•$\overrightarrow{PA}$+(sinB)•$\overrightarrow{PB}$=$\overrightarrow{0}$,
∴(sinC)•$\overrightarrow{AC}$+(sinA)•(-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$)+(sinB)•($\frac{1}{2}$$\overrightarrow{AB}-$$\frac{1}{2}$$\overrightarrow{AC}$)=$\overrightarrow{0}$,
即$\overrightarrow{AC}$(sinC-$\frac{1}{2}$sinA-$\frac{1}{2}$sinB)+$\overrightarrow{AB}$($\frac{1}{2}$sinB-$\frac{1}{2}$sinA)=$\overrightarrow{0}$.
∵$\overrightarrow{AB},\overrightarrow{AC}$不共線,
∴$\left\{\begin{array}{l}{sinC-\frac{1}{2}sinA-\frac{1}{2}sinB=0}\\{\frac{1}{2}sinB-\frac{1}{2}sinA=0}\end{array}\right.$,∴sinA=sinB=sinC,
即A=B=C.
∴三角形ABC是等邊三角形.
故選:A.

點評 本題考查了平面向量的基本定理,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.設an(n=2,3,4…)是(3+$\sqrt{x}$)n的展開式中x的一次項的系數(shù),則$\frac{2016}{2015}$($\frac{3^2}{a_2}$+$\frac{3^3}{a_3}$+…+$\frac{{3^{2016}}}{{a_{2016}}}$)的值是18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知不等式x2-2ax+2>0對x∈[1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求a0-a1+a2-a3+a4-a5的值;
(2)求a1+2a2+3a3+4a4+5a5的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設圓x2+y2-6y+k=0的半徑為2,求圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.等比數(shù)列{an}的公比q=-$\frac{1}{3}$,前4項的和為$\frac{5}{9}$,則a1=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求原點到下列直線的距離:
(1)3x+2y-26=0;
(2)x=y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.定義運算a?b=$\frac{a+b-|a-b|}{2}$,則當a=3+log${\;}_{\frac{1}{4}}$x,b=log2x時,函數(shù)f(x)=a?b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.正方體ABCD-A′B′C′D′中,AB′與A′C′所在直線的夾角為(  )
A.30°B.60°C.90°D.45°

查看答案和解析>>

同步練習冊答案