2.設(shè)an(n=2,3,4…)是(3+$\sqrt{x}$)n的展開式中x的一次項(xiàng)的系數(shù),則$\frac{2016}{2015}$($\frac{3^2}{a_2}$+$\frac{3^3}{a_3}$+…+$\frac{{3^{2016}}}{{a_{2016}}}$)的值是18.

分析 (3+$\sqrt{x}$)n的展開式中,Tr+1=${∁}_{n}^{r}{3}^{n-r}(\sqrt{x})^{r}$,令r=2,則T3=${∁}_{n}^{2}{3}^{n-2}x$,根據(jù)an(n=2,3,4…)是(3+$\sqrt{x}$)n的展開式中x的一次項(xiàng)的系數(shù),可得an=${∁}_{n}^{2}$3n-2,即$\frac{{3}^{n}}{{a}_{n}}$=$\frac{9}{{∁}_{n}^{2}}$=18$(\frac{1}{n-1}-\frac{1}{n})$.再利用“裂項(xiàng)求和”方法即可得出.

解答 解:(3+$\sqrt{x}$)n的展開式中,Tr+1=${∁}_{n}^{r}{3}^{n-r}(\sqrt{x})^{r}$,
令r=2,則T3=${∁}_{n}^{2}{3}^{n-2}x$,
∵an(n=2,3,4…)是(3+$\sqrt{x}$)n的展開式中x的一次項(xiàng)的系數(shù),
∴an=${∁}_{n}^{2}$3n-2,
∴$\frac{{3}^{n}}{{a}_{n}}$=$\frac{9}{{∁}_{n}^{2}}$=18$(\frac{1}{n-1}-\frac{1}{n})$.
∴$\frac{2016}{2015}$($\frac{3^2}{a_2}$+$\frac{3^3}{a_3}$+…+$\frac{{3^{2016}}}{{a_{2016}}}$)=$\frac{2016}{2015}×18[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2015}-\frac{1}{2016})]$=$\frac{2016}{2015}×18×(1-\frac{1}{2016})$=18,
故答案為:18.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知平行于圓柱軸的截面ABB1A1是正方形,面積為3a2,它與軸的距離是底面半徑的一半,求圓柱的全面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等比數(shù)列{an}的首項(xiàng)a1=1,且a2、a4、a3成等差,則數(shù)列{an}的公比q=1或-$\frac{1}{2}$,若q<0,則數(shù)列{an}的前4項(xiàng)和S4=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.利用余弦函數(shù)圖象,寫出滿足cosx>0的x的區(qū)間是(-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ),(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,已知矩形ABCD中,AB=2,BC=1,O為線段AB的中點(diǎn),動(dòng)點(diǎn)P從B出發(fā),沿矩形ABCD的邊逆時(shí)針運(yùn)動(dòng),運(yùn)動(dòng)至A點(diǎn)時(shí)終止.設(shè)∠BOP=x,OP=d,將d表示為x的函數(shù)d=f(x).則下列命題中:
①f(x)有最小值1;
②f(x)有最大值$\sqrt{2}$;
③f(x)有3個(gè)極值點(diǎn);
④f(x)有4個(gè)單調(diào)區(qū)間.
其中正確的是( 。
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x-1,x<1}\\{f(\frac{1}{3}x),x≥1}\end{array}\right.$,若f[f(27)]=f(-$\frac{1}{2}$),則a=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程組$\left\{\begin{array}{l}{ax-y=0}\\{x-(2a-1)y=1}\end{array}\right.$有且只有一個(gè)解,則a的取值范圍為( 。
A.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)∪(1,+∞)B.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞)
C.(-∞,1)∪(1,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),若(sinC)•$\overrightarrow{AC}$+(sinA)•$\overrightarrow{PA}$+(sinB)•$\overrightarrow{PB}$=$\overrightarrow{0}$,則△ABC的形狀為(  )
A.等邊三角形B.鈍角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案