【題目】已知函數(shù).
(1)當(dāng)為何值時(shí), 軸為曲線(xiàn)的切線(xiàn);
(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).
【答案】(1)當(dāng)時(shí), 軸是曲線(xiàn)的切線(xiàn)(2)當(dāng)或時(shí), 有一個(gè)零點(diǎn);當(dāng)或時(shí), 有兩個(gè)零點(diǎn);當(dāng)時(shí), 有三個(gè)零點(diǎn).
【解析】【試題分析】(1)先對(duì)函數(shù)求導(dǎo),再運(yùn)用導(dǎo)數(shù)的幾何意義建立方程組進(jìn)行分析求解;(2)先確定函數(shù)的解析式,再運(yùn)用分類(lèi)整合思想分類(lèi)討論函數(shù)的零點(diǎn)的個(gè)數(shù)問(wèn)題以及對(duì)應(yīng)的參數(shù)的范圍:
(1)設(shè)曲線(xiàn)與軸相切于點(diǎn),則,即,
解得: ,
因此,當(dāng)時(shí), 軸是曲線(xiàn)的切線(xiàn);
(2)當(dāng)時(shí), ,從而,
∴在無(wú)零點(diǎn),
當(dāng)時(shí),若,則, ,故是的零點(diǎn); 若,則, ,故不是的零點(diǎn),當(dāng)時(shí), ,所以只需考慮在的零點(diǎn)個(gè)數(shù),
(Ⅰ)若或,則在無(wú)零點(diǎn),故在單調(diào),而,
所以當(dāng)時(shí), 在有一個(gè)零點(diǎn); 當(dāng)時(shí), 在無(wú)零點(diǎn);
(Ⅱ)若,則在單調(diào)遞減,在單調(diào)遞增,
故當(dāng)時(shí), 取的最小值,最小值為.
若,即, 在無(wú)零點(diǎn);
若,即,則在有唯一零點(diǎn);
③若,即,由于,所以當(dāng)時(shí), 在有兩個(gè)零點(diǎn);當(dāng)時(shí), 在有一個(gè)零點(diǎn).
綜上,當(dāng)或時(shí), 有一個(gè)零點(diǎn);當(dāng)或時(shí), 有兩個(gè)零點(diǎn);
當(dāng)時(shí), 有三個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為常數(shù),對(duì)任意,均有恒成立.下列說(shuō)法:
①的周期為;
②若為常數(shù))的圖像關(guān)于直線(xiàn)對(duì)稱(chēng),則;
③若且,則必有;
④已知定義在上的函數(shù)對(duì)任意均有成立,且當(dāng)時(shí), ;又函數(shù)為常數(shù)),若存在使得成立,則的取值范圍是.其中說(shuō)法正確的是____.(填寫(xiě)所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1=1,|an+1-an|=pn,n∈N*.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·沈陽(yáng)期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點(diǎn),點(diǎn)P在以A為圓心,AD為半徑的圓弧上變動(dòng)(如圖所示).若=λ+μ,其中λ,μ∈R,則2λ-μ的取值范圍是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1上任意一點(diǎn)M到直線(xiàn)l:y=4的距離是它到點(diǎn)F(0,1)距離的2倍;曲線(xiàn)C2是以原點(diǎn)為頂點(diǎn),F為焦點(diǎn)的拋物線(xiàn).
(1)求C1,C2的方程;
(2)設(shè)過(guò)點(diǎn)F的直線(xiàn)與曲線(xiàn)C2相交于A,B兩點(diǎn),分別以A,B為切點(diǎn)引曲線(xiàn)C2的兩條切線(xiàn)l1,l2,設(shè)l1,l2相交于點(diǎn)P,連接PF的直線(xiàn)交曲線(xiàn)C1于C,D兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)e-x(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)φ(x)=xf(x)+tf′(x)+e-x,存在實(shí)數(shù)x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已經(jīng)函數(shù)的定義域?yàn)?/span>,設(shè)
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù)
(2)求證
(3)若不等式(為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.(解答過(guò)程可參考使用以下數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線(xiàn)與線(xiàn)段交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線(xiàn),過(guò)點(diǎn)且斜率不為0的直線(xiàn)與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明直線(xiàn)過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com