已知函數(shù),為常數(shù).
(1)若,求函數(shù)在上的值域;(為自然對數(shù)的底數(shù),)
(2)若函數(shù)在上為單調(diào)減函數(shù),求實數(shù)的取值范圍.
(1);(2)
解析試題分析:(1)解決類似的問題時,注意區(qū)分函數(shù)的最值和極值.求函數(shù)的最值時,要先求函數(shù)在區(qū)間內(nèi)使的點,再計算函數(shù)在區(qū)間內(nèi)所有使的點和區(qū)間端點處的函數(shù)值,最后比較即得.(2)第二問關(guān)鍵是分離參數(shù),把所求問題轉(zhuǎn)化為求函數(shù)的最小值問題.(3)若可導函數(shù)在指定的區(qū)間上單調(diào)遞增(減),求參數(shù)問題,可轉(zhuǎn)化為恒成立,從而構(gòu)建不等式,要注意“=”是否可以取到.
試題解析:解:(1)由題意,
當時,
在為減函數(shù),為增函數(shù) 4分
又 比較可得
的值域為 6分
(2)由題意得在恒成立
恒成立 8分
設
當時恒成立
即實數(shù)的取值范圍是 12分
考點:(1)利用導數(shù)求函數(shù)的最值;(2)利用導數(shù)研究函數(shù)的單調(diào)性.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),函數(shù)g(x)的導函數(shù),且
(1)求的極值;
(2)若,使得成立,試求實數(shù)m的取值范圍:
(3)當a=0時,對于,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
學;虬嗉壟e行活動,通常需要張貼海報進行宣傳,F(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設計海報的尺寸,才能使四周空白面積最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com