分析 由題意畫出圖形,連接BD,BD1,可得∠${D}_{1}BD=\frac{π}{3}$,在底面正方形中,由AB=1,求得BD=$\sqrt{2}$,在Rt△D1DB中,解直角三角形求得DD1,求出直角梯形ADD1A1的面積,然后由棱錐的體積公式求得答案.
解答 解:如圖,
連接BD,BD1,則∠${D}_{1}BD=\frac{π}{3}$,
在底面正方形中,由AB=1,得BD=$\sqrt{2}$,
在Rt△D1DB中,由BD=$\sqrt{2}$,∠${D}_{1}BD=\frac{π}{3}$,
求得${D}_{1}D=BD•tan\frac{π}{3}=\sqrt{2}×\sqrt{3}=\sqrt{6}$,
∴A1A=C1C=$\frac{1}{2}{D_1}$D=$\frac{\sqrt{6}}{2}$,
則${S}_{AD{D}_{1}{A}_{1}}=\frac{1}{2}(\frac{\sqrt{6}}{2}+\sqrt{6})×1=\frac{3\sqrt{6}}{4}$,
∴多面體的體積為V=$2×\frac{1}{3}×\frac{3\sqrt{6}}{4}×1=\frac{\sqrt{6}}{2}$.
故答案為:$\frac{{\sqrt{6}}}{2}$.
點評 本題考查棱柱、棱錐及棱臺體積的求法,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=1是最小值點 | B. | x=0是極小值點 | ||
C. | x=2是極小值點 | D. | 函數(shù)f(x)在(1,2)上單調遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | [0,1] | C. | [0,1) | D. | [0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{15}}{6}$ | B. | -$\frac{\sqrt{15}}{6}$ | C. | $\frac{\sqrt{15}}{3}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin$\frac{x}{2}$ | B. | y=cos2x | C. | y=sin(2x+$\frac{π}{4}$) | D. | y=tan(x-$\frac{π}{4}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com