12.下表是某公司1-8月份的銷售額,通過回歸分析得出回歸方程為$\widehat{y}$=0.96x+4.54,預測9月份的銷售額是( 。┤f元.
月份12345678
萬元5688.510.511.58.513
A.13B.13.18C.13.5D.14

分析 根據(jù)線性回歸方程,計算x=9時,$\widehat{y}$的值即可.

解答 解:∵線性回歸方程為$\widehat{y}$=0.96x+4.54,
當x=9時,$\widehat{y}$=0.96×9+4.54=13.18;
∴預測9月份的銷售額是13.18萬元.
故選:B.

點評 本題考查了利用回歸方程求值的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,地面上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓。
(1)若圓形標志物半徑為25m,以PG所在直線為x軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即∠APF)的正切值為$\frac{41}{39}$,求該圓形標志物的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.過定點A(0,a)在x軸上截得弦長為2a的動圓圓心的軌跡方程是( 。
A.x2+(y-a)2=a2B.y2=2axC.(x-a)2+y2=a2D.x2=2ay

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$,若f(a)=$\frac{5\sqrt{7}}{3}$,則f(-a)=( 。
A.$\frac{5\sqrt{7}}{3}$B.-$\frac{5\sqrt{7}}{3}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四個相異的實數(shù)根,則m的取值范圍是( 。
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.計算:2${\;}^{lo{g}_{2}9lo{g}_{3}2lo{g}_{4}5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若sinα=-$\frac{\sqrt{2}}{2}$,且α∈[0,2π],則α所有可能取得值是( 。
A.$\frac{π}{4}$,$\frac{3π}{4}$B.$\frac{3π}{4}$,$\frac{5π}{4}$C.$\frac{5π}{4}$D.$\frac{5π}{4}$,$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線l:mx+2y+6=0,向量(1-m,1)與l平行,則m的值為( 。
A.-1B.1C.2D.-1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.不等式x(4-x)≤5的解集是R.

查看答案和解析>>

同步練習冊答案