【題目】已知函數(shù)的圖象在點處的切線與直線平行。
(1)求切線的方程;
(2)若函數(shù)有3個零點,求實數(shù)的取值范圍。
【答案】(1) ;(2)
【解析】
(1)由導(dǎo)數(shù)的幾何意義,求得,得到,進而求得切線的切點坐標(biāo),求得切線的方程;
(2)由(1)函數(shù),求得函數(shù)的單調(diào)性與極值,由有3個零點,轉(zhuǎn)化為與的圖象有3個交點,即可求解.
(1)由題意,函數(shù),則,
又的圖象在點處的切線與直線平行,
所以,解得,即,
所以,所以切點的坐標(biāo)為,
則切線方程為,即;
(2)由(1)可知,令,則,
列表如下:
-1 | 1 | ||||
+ | 0 | - | 0 | + | |
極大值 | 極小值 |
所以當(dāng)時,有極大值;
當(dāng)時,有極小值,
且當(dāng)時,;當(dāng)時,,
因為有3個零點,所以有3個實數(shù)根,
即與的圖象有3個交點,所以實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x2-3x)lnx
(1)求函數(shù)f(x)在x=e處的切線方程
(2)對任意的x)都存在正實數(shù)a,使得方程f(x)=a至少有2個實根, 求a的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為是橢圓的兩個焦點,是橢圓上任意一點,且的周長是6.
(1)求橢圓的方程;
(2)設(shè)圓:,過橢圓的上頂點作圓的兩條切線交橢圓于兩點,當(dāng)圓心在軸上移動且時,求的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人玩摸卡片游戲,現(xiàn)有標(biāo)號為1到12的卡片共12張,每人摸4張.
甲說:我摸到卡片的標(biāo)號是10和12;
乙說:我摸到卡片的標(biāo)號是6和11;
丙說:我們?nèi)烁髯悦娇ㄆ臉?biāo)號之和相等.
據(jù)此可判斷丙摸到的編號中必有的兩個是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若函數(shù)的一個極值點為,求的單調(diào)區(qū)間;
(2)若,且關(guān)于的不等式恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某翻譯處有8名翻譯,其中有小張等3名英語翻譯,小李等3名日語翻譯,另外2名既能翻譯英語又能翻譯日語,現(xiàn)需選取5名翻譯參加翻譯工作,3名翻譯英語,2名翻譯日語,且小張與小李恰有1人選中,則有____種不同選取方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對名六年級學(xué)生進行了問卷調(diào)查,得到如下列聯(lián)表(平均每天喝以上為常喝,體重超過為肥胖):
常喝 | 不常喝 | 合計 | |
肥胖 | |||
不胖 | |||
合計 |
(1)已知在全部人中隨機抽取人,求抽到肥胖的學(xué)生的概率?
(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(其中名女生),抽取人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
(參考公式:,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com