【題目】已知 ,數(shù)列{an} 的前 n 項(xiàng)的和記為 Sn .S
(1)求S1,S2,S3的值,猜想Sn的表達(dá)式;
(2)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.

【答案】
(1)

【解答】解:∵

, ,

∴猜想


(2)

【解答】

證明:①當(dāng) n=1 時(shí), ,猜想成立

②假設(shè)當(dāng) n=k 時(shí),猜想成立,即:

當(dāng) n=k+1 時(shí),

∴ n=k+1 時(shí)猜想成立.

∴由①、②得 得證.


【解析】本題主要考查了數(shù)學(xué)歸納法,解決問(wèn)題的關(guān)鍵是(1)因?yàn)? ,所以可分別求出a1,a2,a3,進(jìn)而可求出S1,S2,S3.(2)根據(jù)(1)可猜想出 ,然后利用數(shù)學(xué)歸納法證明時(shí)要分兩個(gè)步驟:一先驗(yàn)證:當(dāng)n=1時(shí),等式成立;二先假設(shè)n=k時(shí),等式成立;再證明當(dāng)n=k+1時(shí),等式也成立.在證明n=k+1時(shí),一定要用上n=k時(shí)的歸納假設(shè),否則證明無(wú)效.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)學(xué)歸納法的定義,需要了解數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:x∈R,2x>m(x2+1),q:x0∈R,x02+2x0﹣m﹣1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀(guān)察下列各不等式:
,
,
,


(1)由上述不等式,歸納出一個(gè)與正整數(shù) 有關(guān)的一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你得到的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab的兩個(gè)零點(diǎn)分別是﹣3和2.
(Ⅰ)求f(x);
(Ⅱ)當(dāng)函數(shù)f(x)的定義域是[0,1]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)城市“共享單車(chē)”的投放在我國(guó)各地迅猛發(fā)展,“共享單車(chē)”為人們出行提供了很大的便利,但也給城市的管理帶來(lái)了一些困難,現(xiàn)某城市為了解人們對(duì)“共享單車(chē)”投放的認(rèn)可度,對(duì)年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否贊成投放共享單車(chē)”的問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

(1)補(bǔ)全頻率分布直方圖,并求的值;

(2)在第四、五、六組“贊成投放共享單車(chē)”的人中,用分層抽樣的方法抽取7人參加“共享單車(chē)”騎車(chē)體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù);

(3)在(2)中抽取的7人中隨機(jī)選派2人作為正副隊(duì)長(zhǎng),求所選派的2人沒(méi)有第四組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班20名同學(xué)某次數(shù)學(xué)測(cè)試的成績(jī)可繪制成如圖莖葉圖.由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計(jì)全班同學(xué)的平均成績(jī).

(1)完成頻率分布直方圖;

(2)根據(jù)(1)中的頻率分布直方圖估計(jì)全班同學(xué)的平均成績(jī)(同一組中的數(shù)據(jù)用改組區(qū)間的中點(diǎn)值作代表);

(3)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>,并假設(shè),且取得每一個(gè)可能值的機(jī)會(huì)相等,在(2)的條件下,求概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合S={A0 , A1 , A2 , A3},在S上定義運(yùn)算⊕:Ai⊕Aj=Ak , 其中k為i+j被4除的余數(shù),i,j=0,1,2,3,則使關(guān)系式(Ai⊕Ai)⊕Aj=A0成立的有序數(shù)對(duì)(i,j)的組數(shù)為(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn).

(1)當(dāng)時(shí),求曲線(xiàn)在處的切線(xiàn)方程;

2)過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn),若所有切線(xiàn)的斜率之和為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案