8.在等差數(shù)列{an}中,Sn為其前n項(xiàng)的和,已知a1+a3=22,S5=45.
(1)求an,Sn;                
(2)設(shè)數(shù)列{Sn}中最大項(xiàng)為Sk,求k.

分析 (1)根據(jù)等差數(shù)列的性質(zhì)列方程解出首項(xiàng)和公差,得到通項(xiàng)公式和前n項(xiàng)和公式;
(2)利用二次函數(shù)的性質(zhì)求出Sn取得最大值時(shí)的n.

解答 解:(1)∵a1+a3=2a2,S5=$\frac{{a}_{1}+{a}_{5}}{2}×5$=5a3,
∴$\left\{\begin{array}{l}2{a_2}=22\\ 5{a_3}=45\end{array}\right.$,即$\left\{\begin{array}{l}{a_2}=11\\{a_3}=9\end{array}\right.$,∴$\left\{\begin{array}{l}{a_1}=13\\ d=-2\end{array}\right.$,
∴an=-2n+15,${S_n}=-{n^2}+14n$.
(2)Sn=-(n-7)2+49,
∴當(dāng)n=7時(shí),Sn取得最大值,
∴k=7.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=cos(2x+φ)的圖象關(guān)于點(diǎn)($\frac{2}{3}$π,0)對(duì)稱,若將函數(shù)f(x)的圖象向右平移m(m>0)個(gè)單位得到一個(gè)偶函數(shù)的圖象,則實(shí)數(shù)m的最小值為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)a>0,且a≠1,己知函數(shù)f(x)=loga$\frac{1-bx}{x-1}$是奇函數(shù),若f(2)<2,則a的取值范圍是($\sqrt{3}$,+∞)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|
(1)若f(x)≤m的解集為{x|-1≤x≤5},求實(shí)數(shù)a,m的值;
(2)當(dāng)a=2且0≤t≤2時(shí),解關(guān)于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,f(0))處的切線l與直線x-y+3=0平行,若數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項(xiàng)和為Sn,則S2016=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-19n+1,記Tn=|a1|+|a2|+…+|an|.
(1)求Sn的最小值及相應(yīng)n的值;
(2)求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=|lgx|-cosx的零點(diǎn)的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知sinθ=$\frac{3}{5}$,θ∈(${\frac{π}{2}$,π),則tan(θ+$\frac{π}{4}$)=(  )
A.-7B.7C.$-\frac{1}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=abx2-(b+2a)x+1有最小值f(2),當(dāng)a,b為何值時(shí),f(2)有最大值,并求出f(2)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案