【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),不等式恒成立(是的導(dǎo)函數(shù)),求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)求導(dǎo),令,求出極值點(diǎn),利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性,即可得出內(nèi)的最值,即可得出值域;
(2)根據(jù)題意,構(gòu)造新函數(shù),將不等式的恒成立問題,轉(zhuǎn)化為在內(nèi)的恒成立問題,求導(dǎo),再二次求導(dǎo),通過(guò)單調(diào)性求出最值,即可求出參數(shù)的取值范圍.
(1)由題可得.
令,得.
當(dāng)時(shí),,當(dāng)時(shí),,
所以,
.
因?yàn)?/span>,所以,
所以的值域?yàn)?/span>.
(2)由得,
即.
設(shè),則.
設(shè),則.
當(dāng)時(shí),,,所以.
所以即在上單調(diào)遞增,則.
若,則,所以在上單調(diào)遞增.
所以恒成立,符合題意.
若,則,必存在正實(shí)數(shù),
滿足:當(dāng)時(shí),,單調(diào)遞減,此時(shí),不符合題意.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;
(2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為。
(1)求、的值;
(2)如果當(dāng),且時(shí), ,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建造一個(gè)矩形游泳池及左右兩側(cè)兩個(gè)大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊在上,矩形的一邊在上,點(diǎn)在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價(jià)與休息區(qū)造價(jià)之比為.
(1)記游泳池及休息區(qū)的總造價(jià)為,求的表達(dá)式;
(2)為進(jìn)行投資預(yù)算,當(dāng)為何值時(shí),總造價(jià)最大?并求出總造價(jià)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點(diǎn)O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點(diǎn),求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈[1,2],log2(x+2)<2m;命題q:關(guān)于x的方程x2﹣x+m2=0有兩個(gè)不同的實(shí)數(shù)根.
(1)若(¬p)∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且滿足.
(1)求、的值;
(2)設(shè)、是拋物線上不與重合的兩個(gè)動(dòng)點(diǎn),記直線、與的準(zhǔn)線的交點(diǎn)分別為、,若,問直線是否過(guò)定點(diǎn)?若是,則求出該定點(diǎn)坐標(biāo),否則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個(gè)平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com