2.直線kx-y-1=0與圓x2+y2-2y=0有公共點,則實數(shù)k的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{3}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

分析 利用直線kx-y-1=0與圓x2+y2-2y=0有公共點,可得$\frac{2}{\sqrt{{k}^{2}+1}}≤1$,即可求出實數(shù)k的取值范圍.

解答 解:圓x2+y2-2y=0的圓心坐標是(0,1),半徑為1,
∵直線kx-y-1=0與圓x2+y2-2y=0有公共點,
∴$\frac{2}{\sqrt{{k}^{2}+1}}≤1$,
∴$k≤-\sqrt{3}$或k$≥\sqrt{3}$,
故選:B.

點評 本題考查直線與圓的位置關系,考查點到直線的距離公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)$y=sin(-\frac{x}{2}-\frac{π}{6})$的單調(diào)遞增區(qū)間是( 。
A.[2kπ+$\frac{2}{3}$π,2kπ+$\frac{8}{3}$π](k∈Z)B.[4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z)
C.[2kπ-$\frac{4}{3}$π,2kπ+$\frac{2}{3}$π](k∈Z)D.[4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求頂點在X軸,且兩頂點的距離是8,$e=\frac{5}{4}$的雙曲線標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)={log_a}\frac{x-2}{x+2}$(a>0且a≠1)
(1)求f(x)的定義域并判定f(x)的奇偶性;
(2)當a>1時,判定f(x)的單調(diào)性并用定義法證明;
(3)是否存在實數(shù)a,使得f(x)的定義域為[m,n]時,值域為[1+logan,1+logam]?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.給出下列三個命題:
①函數(shù)y=tanx在第一象限是增函數(shù)
②奇函數(shù)的圖象一定過原點
③函數(shù)y=sin2x+cos2x的最小正周期為π
④函數(shù)y=x+$\frac{2}{x}$的最小值為2$\sqrt{2}$
其中 假命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,直三棱柱(側棱垂直于底面)ABC-A1B1C1中,CA=CB=$\frac{1}{2}$CC1,點D是棱AA1的中點,且C1D⊥BD
(1)求證:CA⊥CB
(2)求直線CD與平面C1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,A是橢圓上一動點,滿足:
①∠F1AF2的最大值為60°
 ②若圓C與F1A的延長線、F1F2的延長線以及線段AF2相切,則M(2,0)為其中一個切點,則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(x-1)=x2,則f(x)的解析式為( 。
A.f(x)=(x+1)2B.f(x)=(x-1)2C.f(x)=x2+1D.f(x)=x2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設正數(shù)x,y滿足-1<x-y<2,則z=x-2y的取值范圍為( 。
A.(0,2)B.(-∞,2)C.(-2,2)D.(2,+∞)

查看答案和解析>>

同步練習冊答案