14.一件工作可以用2種方法完成,有3人會(huì)用第1種方法完成,另外5人會(huì)用第2種方法完成,從中選出1人來完成這件工作,不同選法的種數(shù)是(  )
A.8B.15C.16D.30

分析 根據(jù)題意,分別計(jì)算利用選擇第1種方法來完成工作和選擇第2種方法來完成工作的情況數(shù)目,由加法原理計(jì)算可得答案.

解答 解:利用分類計(jì)數(shù)原理的加法原理:
(1)選擇第1種方法來完成工作的有:3種選法
(2)選擇第2種方法來完成工作的有:5種選法
所以,有3+5=8種不同的選法;
故選:A.

點(diǎn)評(píng) 本題考查加法原理的運(yùn)用,注意分類計(jì)數(shù)原理與分步計(jì)數(shù)原理的不同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在射線y=2x(x≥0)上,且$|z|=\sqrt{5}$,則復(fù)數(shù)z的虛部為(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2作一條直線(不與x軸垂直)與橢圓交于A,B兩點(diǎn),如果△ABF1恰好為等腰直角三角形,該直線的斜率為(  )
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長方臺(tái)形狀的物體垛積.設(shè)隙積共n層,上底由長為a個(gè)物體,寬為b個(gè)物體組成,以下各層的長、寬依次各增加一個(gè)物體,最下層成為長為c個(gè)物體,寬為d個(gè)物體組成,沈括給出求隙積中物體總數(shù)的公式為S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干個(gè)相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個(gè)數(shù)為85.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${(x-\frac{2}{{\sqrt{x}}})^n}$的二項(xiàng)展開式中第五項(xiàng)和第六項(xiàng)的二項(xiàng)式系數(shù)最大,則各項(xiàng)的系數(shù)和為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)A={x|x2-4x-5=0},B={x|x2=1},則A∪B=( 。
A.{-1,1,5}B.{-1,5}C.{1,5}D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知l1⊥l2,直線l1的傾斜角為60°,則直線l2的傾斜角為( 。
A.60°B.120°C.30°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),則f(1)+f(2)+…+f(100)$=( 。
A.$-\sqrt{3}$B.$-2\sqrt{3}$C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=-2x2+3在點(diǎn)(0,3)處的導(dǎo)數(shù)是0.

查看答案和解析>>

同步練習(xí)冊(cè)答案