【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an1b2+…+a1bn , n∈N* , 是否存在實(shí)數(shù)p,q,r,對于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在說明理由.

【答案】
(1)解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,

由a4+b4=27,S4﹣b4=10得,

解得d=3,q=2,

所以an=3n﹣1,bn=2n


(2)解:假設(shè)存在實(shí)數(shù)p,q,r,對于任意n∈N*,都有Tn=pan+qbn+r,

由(1)得,Tn=anb1+an1b2+…+a1bn

=

∴2Tn=

由②﹣①得,

Tn=﹣2(3n﹣1)+3×(22+23+…+2n)+2n+2

=3× +2n+2﹣6n+2

=102n﹣6n﹣10

∴Tn=﹣2(3n﹣1)+10×2n﹣12=pan+qbn+r,

可得p=﹣2;q=10;r=﹣12,

即存在p=﹣2;q=10;r=﹣12滿足條件


【解析】(1)設(shè)出首項(xiàng)和公差,根據(jù)等差、等比數(shù)列的通項(xiàng)公式和等差數(shù)列的前n項(xiàng)和公式,列出方程組求出首項(xiàng)和公差,即可求出an、bn;(2)假設(shè)存在實(shí)數(shù)p、q、r滿足條件,由(1)表示出Tn , 利用錯(cuò)位相減法求出Tn的表達(dá)式化簡后即可求出實(shí)數(shù)p、q、r的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:),還要掌握數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:
(1)若動點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動點(diǎn)M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會的分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為A1 , A2 , A3 , 乙協(xié)會編號為A4 , 丙協(xié)會編號分別為A5 , A6 , 若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=2,BC=1,

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且 恰為函數(shù)的零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)求通過M點(diǎn)且被這點(diǎn)平分的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,底面是正三角形的直三棱柱中,D是BC的中點(diǎn),.

)求證:平面;

)求的A1 到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,△BCD為正三角形,現(xiàn)將△BCD沿BD向上折起,折起后的點(diǎn)C記為C′,且CC′= ,連接CC′,E為CC′的中點(diǎn).

文科:
(1)求證:AC′∥平面BDE;
(2)求證:CC′⊥平面BDE;
(3)求三棱錐C′﹣BCD的體積.

查看答案和解析>>

同步練習(xí)冊答案