分析 利用橢圓的對稱性,判斷P的位置,求出離心率,以及橢圓分離心率,推出結(jié)果.
解答 解:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e,長軸兩個頂點分別為A,B.若C上有一點P,使得∠APB=120°,由橢圓的對稱性可知P在橢圓的上頂點時,∠APB最大,
此時∠OPA=60°,$\frac{a}≥tan60°=\sqrt{3}$,可得:$\frac{{c}^{2}}{{a}^{2}}≥\frac{2}{3}$,e=$\frac{c}{a}$$≥\frac{\sqrt{6}}{3}$,e∈(0,1),
∴離心率e的范圍為:$[\frac{\sqrt{6}}{3},1)$.
故答案為:$[\frac{\sqrt{6}}{3},1)$.
點評 本題考查三角函數(shù)和橢圓的簡單幾何性質(zhì)等知識點,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若直線l平行于平面α內(nèi)的無數(shù)條直線,則l∥α | |
B. | 若直線a在平面α外,則a∥α | |
C. | 若直線a∥b,b?α,則a∥α | |
D. | 若直線a∥b,b?α,則直線a平行于平面α內(nèi)的無數(shù)條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (k,$\frac{k+1}{k-1}$] | B. | (1,$\frac{k+1}{k-1}$] | C. | (1,k] | D. | [k,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com