7.某市2005年國民生產(chǎn)總值為20億元,計劃在今后的10年內(nèi),平均每年增長8%,試問:到2015年時,該市的國民生產(chǎn)總值將達(dá)到20×1.0810億元(用代數(shù)式表示).

分析 設(shè)在2005年后的第x年,該市國民生產(chǎn)總值為y億元,得到第x年,該市國民生產(chǎn)總值:y=20×(1+8%)x,由此能求出結(jié)果.

解答 解:設(shè)在2005年后的第x年,該市國民生產(chǎn)總值為y億元,
則第1年:y=20×(1+8%)=20×1.08,
第2年:y=20×(1+8%)2=20×1.082,
第3年:y=20×(1+8%)3=20×1.083

由此得到第x年,該市國民生產(chǎn)總值:y=20×(1+8%)x=20×1.08x,
∴到2015年時,該市的國民生產(chǎn)總值將達(dá)到:y=20×(1+8%)10=20×1.0810
故答案為:20×1.0810

點(diǎn)評 本題考查等比數(shù)列的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知條件p:x≥y≥0,條件q:$\sqrt{x}≥\sqrt{y}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用下列方法給定數(shù)列{an},a0=$\frac{1}{2}$,ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),證明:1-$\frac{1}{n}$<an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中:
(1)已知b=8,c=3,∠A=60°,求a;
(2)已知a=2,b=$\sqrt{2}$,c=$\sqrt{3}$+1,求∠A;
(3)已知a=2,b=$\sqrt{6}$,∠A=45°,求∠B;
(4)已知a=5$\sqrt{2}$,c=10,∠A=30°,求∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-2x+2,當(dāng)x∈[1,4]時總有f(x)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的外接圓圓心為O,半徑為2,$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|.
(1)求$\overrightarrow{CA}$$•\overrightarrow{CB}$的值;
(2)若E是AC的中點(diǎn),求|$\overrightarrow{BE}$+$\overrightarrow{OE}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知x>0,y>0,且x+2y=1,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知2sin2α+5cos(-α)=4.且α是第一象限角.求下列各式的值;
(1)sin($\frac{π}{2}$+α);
(2)tan(α+π)+$\frac{sin(\frac{3π}{2}-α)}{cos(π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.a(chǎn),b,c為三個人,命題P:“如果b的年齡不是最大的,那么a的年齡最小”和命題Q:“如果c的年齡不是最小的,那么a的年齡最大”都是真命題,則a,b,c的年齡大小順序是( 。
A.b>a>cB.a>c>bC.c>b>aD.不能確定

查看答案和解析>>

同步練習(xí)冊答案