8.設(shè)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,1)}\\{{x}^{2}-1,x∈[1,2]}\end{array}\right.$,則${∫}_{-1}^{2}$f(x)dx的值為$\frac{π}{2}$+$\frac{4}{3}$.

分析 根據(jù)分段函數(shù)的積分公式和性質(zhì),及定積分的幾何意義,即可得到結(jié)論.

解答 解:由定積分的性質(zhì)${∫}_{-1}^{2}$f(x)dx=${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}{(x}^{2}-1)dx$,
根據(jù)定積分的幾何意義,${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$表示是以原點(diǎn)為圓心,以1為半徑圓面積的一半,
∴${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$=$\frac{π}{2}$,
${∫}_{1}^{2}{(x}^{2}-1)dx$=($\frac{1}{3}$x3-x)${丨}_{1}^{2}$=$\frac{4}{3}$,
${∫}_{-1}^{2}$f(x)dx=$\frac{π}{2}$+$\frac{4}{3}$.
故答案為:$\frac{π}{2}$+$\frac{4}{3}$.

點(diǎn)評(píng) 本題求一個(gè)分段函數(shù)的定積分之值,著重考查了定積分的幾何意義和積分計(jì)算公式等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\int{\;}_0^{\frac{π}{2}}$(sinx-acosx)dx=3,則實(shí)數(shù)a的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.N為圓x2+y2=1上的一個(gè)動(dòng)點(diǎn),平面內(nèi)動(dòng)點(diǎn)M(x0,y0)滿足|y0|≥1且∠OMN=30°(O為坐標(biāo)原點(diǎn)),則動(dòng)點(diǎn)M運(yùn)動(dòng)的區(qū)域面積為( 。
A.$\frac{8π}{3}$-2$\sqrt{3}$B.$\frac{4π}{3}$-$\sqrt{3}$C.$\frac{2π}{3}$+$\sqrt{3}$D.$\frac{4π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.根據(jù)下列條件,分別求A∩B,A∪B:
(1)A={x|x≥0},B={x|x≤0};
(2)A={x|x≥0},B={x|x<2};
(3)A={x|x≥0},B={x|x>2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某班數(shù)學(xué)課外興趣小組共有10人,6名男生,4名女生,其中1名為組長(zhǎng),現(xiàn)要選3人參加數(shù)學(xué)競(jìng)賽,分別求出滿足下列各條件的不同選法數(shù):
(1)要求組長(zhǎng)必須參加;
(2)要求選出的3人中至少有1名女生;
(3)要求選出的3人中至少有1名女生和1名男生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.5個(gè)人站成一列,重新站隊(duì)時(shí)各人都不站在原來的位置上,共有( 。┓N不同的站法.
A.42B.44C.46D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\sqrt{{x}^{2}-4}$的定義域是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$)是α的終邊與單位圓的交點(diǎn),O為坐標(biāo)原點(diǎn),將α的終邊繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)45°與單位圓交于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為( 。
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.向量$\overrightarrow{a}$=(1,sinθ),$\overrightarrow$=(cosθ,$\sqrt{3}$),θ∈R,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍為[1,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案