一個路口的紅綠燈,紅燈的時間為30秒,綠燈的時間為40秒,黃燈的時間為5秒.則某人到達路口時,看到的不是紅燈的概率是
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)題意,該路口紅綠燈亮的一個周期為:30秒+5秒+40秒=75秒.某人到達路口時看見的不是紅燈的事件,對應(yīng)的時間為45秒,用符合題意事件的時間長度,除以所有事件的時間長度,即可得到正確選項.
解答: 解:設(shè)事件A=“某人到達路口時看見的不是紅燈”,
則事件A對應(yīng)45秒的時間長度,而路口紅綠燈亮的一個周期為:30秒+5秒+40秒=75秒的時間長度.
根據(jù)幾何概型的公式,可得事件A發(fā)生的概率為P(A)=
45
75
=
3
5

故答案為:
3
5
點評:本題考查幾何概型,是一個由時間長度之比確定概率的問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為10的正方形ABCD內(nèi)有一動點P,AP=9,作PQ⊥BC于Q,PR⊥CD于R,求矩形PQCR面積的最小值和最大值,并指出取最大值時P的具體位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x-
1
x
在點(1,0)處的切線方程為( 。
A、y=2x-2
B、y=x-1
C、y=0
D、y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項a1=1,公差d>0,且a2,a5,a14分別是等比數(shù)列{bn}的b2,b3,b4
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}對任意自然數(shù)n均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1成立,求c1+c2+…+c2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)圓的極坐標(biāo)方程為ρ=2cosθ-2
3
sinθ
,則圓的圓心的極坐標(biāo)是
 
(0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|<3},B={x|x-2≤0},則A∪B等( 。
A、(-∞,3]
B、(-∞,3)
C、[2,3)
D、(-3,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小波通過做游戲的方式來確定周末活動,他隨機地往單位圓內(nèi)投擲一點,若此點到圓心的距離小于
1
2
,則周末去踢球,否則去圖書館.則小波周末去圖書館的概率是( 。
A、
1
4
B、
3
4
C、
1
2
D、
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x+a(a∈R,a為常數(shù)).
(1)求函數(shù)的最小正周期;
(2)若x∈[0,  
π
2
]
時,f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是一個幾何體的三視圖,則該幾何體的體積為( 。
A、16+2πB、8+2π
C、16+πD、8+π

查看答案和解析>>

同步練習(xí)冊答案