以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸的拋物線經(jīng)過點(diǎn)A(1,2),則該拋物線的焦點(diǎn)坐標(biāo)為(    )

A.(1,0)或(0,1)                 B.(2,0)或(0,2)

C.(1,0)或(0,)                D.(2,0)或(0,)

答案:C  【解析】本題考查拋物線方程及焦點(diǎn)的求解.據(jù)題意設(shè)拋物線方程為:y2=2px(p≠0)或x2=2py(p≠0),由點(diǎn)A(1,2)在拋物線上代入分別解得方程為:y2=4x、x2=y,故焦點(diǎn)坐標(biāo)分別為:(1,0)和(0,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸的拋物線經(jīng)過點(diǎn)A(1,2),則該拋物線的焦點(diǎn)坐標(biāo)為( 。
A、(1,0)或(0,1)
B、(2,0)或(0,2)
C、(1,0)或(0,
1
8
)
D、(2,0)或(0,
1
8
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸,并且經(jīng)過點(diǎn)P(-2,-4)的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)點(diǎn)A(2,-4)在以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸的拋物線上,求拋物線方程;
(2)已知雙曲線C經(jīng)過點(diǎn)(1,1),它漸近線方程為y=±
3
x,求雙曲線C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸,并且過點(diǎn)P(-2,-4)的拋物線標(biāo)準(zhǔn)方程為
y2=-8x或x2=-y
y2=-8x或x2=-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (本小題滿分10分)

(1)點(diǎn)A(2,-4)在以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸的拋物線上,求拋物線方程;

(2)已知雙曲線經(jīng)過點(diǎn),它漸近線方程為,求雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案