15.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=2+i,則$\frac{z_1}{z_2}$=$\frac{3}{5}$+$\frac{4}{5}$i.

分析 由題意可得z2=2-i,再由復(fù)數(shù)的除法運(yùn)算法則,計(jì)算即可得到所求.

解答 解:復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=2+i,
可得z2=2-i,
則$\frac{z_1}{z_2}$=$\frac{2+i}{2-i}$=$\frac{(2+i)(2+i)}{(2-i)(2+i)}$=$\frac{3+4i}{4+1}$=$\frac{3}{5}$+$\frac{4}{5}$i.
故答案為:$\frac{3}{5}$+$\frac{4}{5}$i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的乘除運(yùn)算,注意運(yùn)用共軛復(fù)數(shù)的概念,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有3個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=$\frac{1}{3}$x3-(1+$\frac{2}$)x2+2bx在區(qū)間[3,5]上不是單調(diào)函數(shù),則函數(shù)f(x)在R上的極大值為( 。
A.$\frac{2}{3}$b2-$\frac{1}{6}$b3B.$\frac{3}{2}$b-$\frac{2}{3}$C.0D.2b-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2+bx+1(a,b∈R).
(1)若f(-1)=0,且對(duì)任意實(shí)數(shù),恒有f(x)≥0,求a,b的值;
(2)在(1)的條件下,若g(x)=f(x)-kx在[-2,2]上單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)若f(x)在R上為偶函數(shù),且F(x)=$\left\{\begin{array}{l}{f(x),當(dāng)x>0時(shí)}\\{-f(x),當(dāng)x<0時(shí)}\end{array}\right.$,試判斷F(x)奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1(a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x)=x2-x,當(dāng)x>0時(shí),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F,上頂點(diǎn)為B,下頂點(diǎn)為C,若直線AB與直線CF的交點(diǎn)為(3a,16).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P(m,0)為橢圓C的長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P且斜率為$\frac{4}{5}$的直線l交橢圓C于S,T兩點(diǎn),證明:|PS|2+|PT|2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.從寫上0,1,2,…,9 十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片數(shù)字各不相同的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知半徑是r的球的體積公式為V=$\frac{4π}{3}{r}^{3}$,則當(dāng)r=2時(shí),球的體積V對(duì)于半徑r的變化率是(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC邊上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)證明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱錐D-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案