已知兩條平行于x軸的直線l1:y=m+1,和l2:y=
1
m
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A(x1,y1),B(x2,y2),l2與函數(shù)y=|log2x|的圖象從左至右相交于C(x3,y3),D(x4,y4),記a=|x1-x3|,b=|x2-x4|,當(dāng)m變化時(shí),
b
a
的最小值為
 
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:依題意可求得為x1,x2,x3,x4的值,a=|x1-x3|,b=|x2-x4|,利用基本不等式可求得當(dāng)m變化時(shí),
b
a
的最小值.
解答: 解:則-log2x1=m+1,log2x2=m+1;-log2x3=
1
m
,log2x4=
1
m
;
∴x1=2-m-1,x2=2m+1,x3=2-
1
m
,x4=2
1
m

∵a=|x1-x3|,b=|x2-x4|,
b
a
=
2m+1-2
1
m
2-m-1-2-
1
m
=2m+12
1
m
=2m+1+
1
m
,
∵m>0,
∴m+1+
1
m
≥1+2
m•
1
m
=3,當(dāng)且僅當(dāng)m=1時(shí)取等號(hào),
b
a
≥23=8,
∴當(dāng)m變化時(shí),
b
a
的最小值為8,
故答案為:8
點(diǎn)評(píng):本題主要考查了對(duì)數(shù)函數(shù)的圖象和性質(zhì),以及基本不等式的問(wèn)題,考查了轉(zhuǎn)化和分析問(wèn)題的能力,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),f′(x)+
f(x)
x
>0,則關(guān)于x的函數(shù)g(x)=f(x)+
1
x
的零點(diǎn)個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆均勻的四面分別標(biāo)有1,2,3,4點(diǎn)的正四面體骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在區(qū)域Ω:
x>0
y>0
x-y-2>0
內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個(gè)位上的數(shù)字都小,則稱這個(gè)數(shù)為凹數(shù),如524,746等都是凹數(shù),那么各個(gè)數(shù)位上無(wú)重復(fù)數(shù)字的三位凹數(shù)有( 。﹤(gè).
A、72B、120
C、240D、360

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2,則不等式f(1-2x)<f(3)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任意m,n∈N*,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1).
則f(2014,2015)的值為( 。
A、22013+2014
B、22013+4028
C、22014+2014
D、22014+4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
m
=(
3
b-c,cosC),
n
=(a,cosA),
m
n
,則tanA的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式a2x2-(2
6
-1)x-
6
-lne≥0(0<a<1,e為自然對(duì)數(shù)的底數(shù))的解集為D,函數(shù)f(x2-3)=ln
x2+1
x2+6
,x∈D.
(1)求出f(x)的解析式和定義域;
(2)判斷f(x)的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則下列命題中是假命題的是(  )
A、p∧qB、p∨q
C、p∧¬qD、p∨¬q

查看答案和解析>>

同步練習(xí)冊(cè)答案