7.在△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{π}{4}$,cosB=$\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若c=$\sqrt{2}$,求△ABC的面積.

分析 (Ⅰ)利用同角三角函數(shù)的基本關系,誘導公式、兩角和差的余弦公式,求得cosC的值.
(Ⅱ)若c=$\sqrt{2}$,利用正弦定理求得a的值,可得△ABC的面積.

解答 解:(Ⅰ)△ABC中,∵$cosB=\frac{4}{5}>0$,∴sinB=$\sqrt{{1-cos}^{2}B}$=$\frac{3}{5}$,又 A=$\frac{π}{4}$,
∴$cosC=cos[π-(\frac{π}{4}+B)]=-cos(\frac{π}{4}+B)$
=$-(cos\frac{π}{4}cosB-sin\frac{π}{4}sinB)=\frac{{\sqrt{2}}}{2}•\frac{3}{5}-\frac{{\sqrt{2}}}{2}•\frac{4}{5}=-\frac{{\sqrt{2}}}{10}$.
(Ⅱ)由(Ⅰ)知$sinC=\frac{{7\sqrt{2}}}{10}$.由正弦定理知:$\frac{a}{sinA}=\frac{c}{sinC}$,∴$a=\frac{{5\sqrt{2}}}{7}$,
∴$S=\frac{1}{2}acsinB=\frac{1}{2}•\frac{{5\sqrt{2}}}{7}•\sqrt{2}•\frac{3}{5}=\frac{3}{7}$.

點評 本題主要考查正弦定理的應用,兩角和差的余弦公式,同角三角函數(shù)的基本關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.如果f(x+y)=f(x)•f(y)且f(1)=1,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$等于(  )
A.1005B.1006C.2008D.2010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖1,長方體ABCD-A′B′C′D′中,AB=BC=2a,AA′=a.
(1)E為棱CC′上任一點,求證:平面ACC′A′⊥平面BDE;
(2)若E為CC′的中點,P為D′C′的中點,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在菱形ABCD中,∠ABC=60°,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,CF=3.
(I)求證:EF⊥平面BDE;
(Ⅱ)求二面角B-DF-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若角α的終邊經(jīng)過點P(-8,-6),則sinα=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設集合A={0,1,2,3},B={1,2,3},則A∩B=( 。
A.{0,1,2,3}B.{0,3}C.{1,2,3}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合A={1,2,3},B={2,4,5},則集合A∪B的子集個數(shù)為32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知各項為正的等比數(shù)列{an}中,a4與a14的等比中項為3,則2a7+a11的最小值為(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,其中a>0且a≠1,若f(-1)=f(1),則logab=( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習冊答案