14.關(guān)于x的不等式|x-2|+|x-8|≥a在R上恒成立,則a的最大值為6.

分析 關(guān)于x的不等式f(x)≥a在R上恒成立,求出f(x)最小值為6,從而6≥a,即可求實(shí)數(shù)a的最大值.

解答 解:由絕對(duì)值的性質(zhì)得f(x)=|x-2|+|x-8|≥|(x-2)-(x-8)|=6,
所以f(x)最小值為6,從而6≥a,解得a≤6,
因此a的最大值為6.
故答案為:6.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1,求數(shù)列{an}和{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若復(fù)數(shù)z滿足z(1+i)=1-2i,其中i為虛數(shù)單位,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD的平行四邊形,∠ADC=60°,$AB=\frac{1}{2}AD$,PA⊥面ABCD,E為PD的中點(diǎn).
(Ⅰ)求證:AB⊥PC
(Ⅱ)若PA=AB=$\frac{1}{2}AD=2$,求三棱錐P-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過(guò)點(diǎn)$(1,\frac{{2\sqrt{3}}}{3})$,左右焦點(diǎn)分別為F1、F2,圓x2+y2=2與直線x+y+b=0相交所得弦長(zhǎng)為2.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)Q是橢圓C上不在x軸上的一個(gè)動(dòng)點(diǎn),Q為坐標(biāo)原點(diǎn),過(guò)點(diǎn)F2作OQ的平行線交橢圓C于M、N兩個(gè)不同的點(diǎn)
(1)試探究$\frac{|MN|}{{|OQ{|^2}}}$的值是否為一個(gè)常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由.
(2)記△QF2M的面積為S1,△OF2N的面積為S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$則z=3x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若4<x<7,則式子$\root{4}{{{{(x-4)}^4}}}+\root{4}{{{{(x-7)}^4}}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥平面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC的中點(diǎn),過(guò)MN作平面MNPQ分別與線段CD,AB相交于點(diǎn)P,Q,且$\overrightarrow{AQ}=λ\overrightarrow{AB}$.
(1)當(dāng)$λ=\frac{1}{2}$時(shí),證明:平面MNPQ∥平面SAD;
(2)是否存在實(shí)數(shù)λ,使得二面角M-PQ-B為60°?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案