11.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,則c=( 。
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

分析 利用余弦定理直接求解即可.

解答 解:∵△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.
a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,
∴$cosA=\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,即$\frac{2}{3}=\frac{9+{c}^{2}-5}{6c}$,
解得c=2.
故選:C.

點評 本題考查三角形邊長的求法,考查余弦定理等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設A,B為兩個同高的幾何體,p:A,B的體積不相等,q:A,B在等高處的截面積不恒相等,根據(jù)祖暅原理可知,q是p的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當a=-2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>-1,且當x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若ab=0,則a=0或b=0的否命題若ab≠0,則實數(shù)a≠0且b≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩個變量y與x的回歸模型中,分別選擇了4個不同模型,它們對應的R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$的值如下,其中擬合效果最好的模型是( 。
A.模型1對應的R2=0.48B.模型3對應的R2=0.15
C.模型2對應的R2=0.96D.模型4對應的R2=0.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(Ⅰ)已知${(2x-1)^{10}}={a_0}+{a_1}(x-1)+{a_2}(x-1{)^2}+…+{a_{10}}{(x-1)^{10}}$,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7
(Ⅱ)2017年5月,北京召開“一帶一路”國際合作高峰論壇.組委會將甲、乙、丙、丁、戊五名志愿者分配到翻譯、導游、禮儀、司機四個不同的崗位,每個崗位至少有一人參加,且五人均能勝任這四個崗位.
(i)若每人不準兼職,則不同的分配方案有幾種?
(ii)若甲乙被抽調(diào)去別的地方,剩下三人要求每人必兼兩職,則不同的分配方案有幾種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列四個命題:
①在△ABC中,若C>$\frac{π}{2}$,則sinA<cosB;
②已知點A(0,3),則函數(shù)y=$\sqrt{3}$cosx-sinx的圖象上存在一點P,使得|PA|=1;
③函數(shù)y=cos2x+2bcosx+c是周期函數(shù),且周期與b有關(guān),與c無關(guān);
④設方程x+sinx=$\frac{π}{2}$的解是x1,方程x+arcsinx=$\frac{π}{2}$的解是x2,則x1+x2=π.
其中真命題的序號是①③.(把你認為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知{an}是等比數(shù)列,其中|q|<1,且a3+a4=2,a2a5=-8,則S3=( 。
A.12B.16C.18D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)列{an}的通項公式為an=|n-13|,那么滿足ak+ak+1+…+ak+19=102的正整數(shù)k=2或5.

查看答案和解析>>

同步練習冊答案