在△ABC中,∠ABC=
π
3
,AB=2,BC=3,則sin∠BAC=
 
考點:正弦定理
專題:三角函數(shù)的求值,解三角形
分析:先由條件利用余弦定理求得AC,再利用正弦定理求得sin∠BAC的值.
解答: 解:在△ABC中,∵∠ABC=
π
3
,AB=2,BC=3,
由余弦定理可得 AC2=4+9-2×2×3cos
π
3
=7,
∴AC=
7

再由正弦定理可得
AC
sin∠ABC
=
BC
sin∠BAC

7
sin
π
3
=
3
sin∠BAC
,解得 sin∠BAC=
3
21
14
,
故答案為:
3
21
14
點評:本題主要考查正弦定理、余弦定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設E為PC中點,點F在線段PD上且PF=2FD.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)設二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的兩個焦點是(0,-
3
)和(0,
3
),并且經(jīng)過點(
3
2
 ,  1)
,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F.
(Ⅰ)求橢圓C和拋物線E的標準方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求
AG
HB
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是棱長為1的正四面體內任一點,則P點到四個面的距離之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2(ex+e-x)-(2x+1)2(e2x+1+e-2x-1),則滿足f(x)>0的實數(shù)x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

表面積為12π的圓柱,當其體積最大時,該圓柱的底面半徑與高的比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某設備的使用年限x(年)和所支出的維修費用y(萬元),有如下表所示的統(tǒng)計資料:
使用年限x(年) 2 3 4 5 6
維修費用y(萬元) 2.2 3.8 5.5 6.5 7.0
由資料知
y
對x呈線性相關關系,則其回歸直線方程
y
=bx+a為
 
 (其中2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤|f(
π
6
)|
對一切x∈R恒成立,則    
①f(-
π
12
)=0;      
②|f(
12
)|<|f(
π
5
)|
;
③f(x)既不是奇函數(shù)也不是偶函數(shù);  
④f(x)的單調遞增區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z);   
⑤存在經(jīng)過點(a,b)的直線與函數(shù)f(x)的圖象不相交.
以上結論正確的是( 。
A、①②B、①②③
C、④⑤D、③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
1-x2
|x+2|-2
;
(2)f(x)=(
1
2x-1
+
1
2
)•x

(3)f(x)=lg(
x2+1
-x

查看答案和解析>>

同步練習冊答案