已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)求∁RA,(∁RB)∪A;
(2)已知C={x|-1<x<8,x∈Z},(∁RA)∩C.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(1)由已知中集合A={x|3≤x<6},B={x|2<x<9},進(jìn)而結(jié)合集合交集,并集,補(bǔ)集的定義,可得答案;
(2)由C={x|-1<x<8,x∈Z},結(jié)合集合交集,并集,補(bǔ)集的定義,可得答案;
解答: 解:(1)∵A={x|3≤x<6},B={x|2<x<9}
∴∁RA={x|x≥6或x<3},∁RB={x|x≥9或x≤2}
∴(∁RB)∪A={x|x≤2或3≤x<6或x≥9}
(2)∵∁RA={x|x≥6或x<3}
C={x|-1<x<8,x∈Z}={0,1,2,3,4,5,6,7}
∴(∁RA)∩C={0,1,2,6,7}
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合的交集,并集,補(bǔ)集及其運(yùn)算,難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p;x∈A={x|x-a|≤4,x∈R,a∈R},條件q:x∈B={x|x<-1或x>5}.
(I)是否存在實(shí)數(shù)a,使得A∩B=(5,6],若存在求實(shí)數(shù)a的值,若不存在請說明理由;
(Ⅱ)若“?q”是“?p”的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{x∈R|x2=1}的子集個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1,x是有理數(shù)
0,x是無理數(shù)
,則f(π)=( 。
A、0B、1C、0或1D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線l:y=k(x+2
2
)相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),若△ABC的面積最大,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定全集∪,若非空集合A、B滿足A⊆U,B⊆U且集合A中的最大元素小于B中的最小元素,則稱(A,B)為U的一個(gè)有序子集對(duì),若U={1,2,3,4},則U的有序子集對(duì)的個(gè)數(shù)為( 。
A、16B、17C、18D、19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1中,AB=3,AC=2,AB⊥AC,A1C1⊥BC1側(cè)棱與底面成60°角.
(1)求證:AC⊥平面ABC1;
(2)求證:C1在平面ABC上的射影H在直線AB上;
(3)求此三棱柱體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,且-a2,Sn,2an+1成等差.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
an
(an-1)(an+1-1)
,求數(shù)列{bn}的前n項(xiàng)的和.
(3)求證:
2
3
Tn
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在(0,1)內(nèi)有極小值,則( 。
A、b>0
B、b<1
C、0<b<1
D、b<
1
2

查看答案和解析>>

同步練習(xí)冊答案