如圖,斜三棱柱ABC-A1B1C1中,AB=3,AC=2,AB⊥AC,A1C1⊥BC1側(cè)棱與底面成60°角.
(1)求證:AC⊥平面ABC1
(2)求證:C1在平面ABC上的射影H在直線AB上;
(3)求此三棱柱體積的最小值.
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)根據(jù)棱柱的性質(zhì),我們可得A1C1∥AC,又由已知中A1C1⊥BC1,AB⊥AC,我們根據(jù)線面垂直的判定定理可得AC⊥面ABC1;
(2)根據(jù)(1)的結(jié)論,由線面垂直的判定定理可得平面ABC⊥平面ABC1,在平面ABC1內(nèi),過C1作C1H⊥AB于H,則C1H⊥平面ABC,即C1點在平面ABC上的射影H在直線AB上;
(3)連接HC,由(2)的結(jié)論可得C1H⊥平面ABC,即∠C1CH就是側(cè)棱CC1與底面所成的角,由已知中側(cè)棱與底面成60°角,故可得當(dāng)CH=AC時,棱柱的體積取最小值,求出棱柱的底面積和高,代入棱柱體積公式即可得到答案.
解答: 證明:(1)由棱柱性質(zhì),可知A1C1∥AC,∵A1C1⊥BC1,
∴AC⊥BC1,又∵AC⊥AB,∴AC⊥平面ABC1
(2)由(1)知AC⊥平面ABC1,又AC?平面ABC,
∴平面ABC⊥平面ABC1,
在平面ABC1內(nèi),過C1作C1H⊥AB于H,則C1H⊥平面ABC
故點C1在平面ABC上的射影H在直線AB上.
解:(3)連接HC,由(2)知C1H⊥平面ABC,
∴∠C1CH就是側(cè)棱CC1與底面所成的角,
∴∠C1CH=60°,C1H=CH•tan60°=
3
CH
V棱柱=S△ABC•C1H=
1
2
×3×2×
3
CH=3
3
CH
∵CA⊥AB,∴CH≥AC=2,
所以棱柱體積最小值3
3
×2=6
3
點評:本題考查的知識點是直線與平面垂直的判定,棱柱的體積,空間線面關(guān)系,其中熟練掌握空間直線與平面平行或垂直的判定、性質(zhì)、定義及幾何特征是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:-1<ln(2x-1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
(x>0),若存在實數(shù)m、n(m<n)使f(x)在區(qū)間(m,n)上的值域為(tm,tn),則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)求∁RA,(∁RB)∪A;
(2)已知C={x|-1<x<8,x∈Z},(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且a=6,2
3
sinAsinBsinC=sin2A+sin2B+sin2C.在線段BC上取一點D,使BD=
1
3
BC,則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x-1)的定義域為(1,2),則函數(shù)f(x+1)的定義域為( 。
A、(0,2)
B、(1,2)
C、(1,3)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=6,∠A=30°,∠B=120°,則△ABC的面積為( 。
A、9
B、18
C、9
3
D、18
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將圖中陰影部分可用交、并、補運算表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個幾何體的三視圖如圖(其中正視圖中的圓弧是半圓)所示,則該幾何體的表面積為(  )
A、92+24π
B、82+14π
C、92+14π
D、82+24π

查看答案和解析>>

同步練習(xí)冊答案