15.如圖所示,已知拋物線C:y2=4x的焦點(diǎn)是F,直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A,B兩點(diǎn),A點(diǎn)在x軸下方,點(diǎn)D和點(diǎn)A關(guān)于x軸對(duì)稱(chēng).
(1)若$\overrightarrow{BF}$=4$\overrightarrow{FA}$,求直線l的方程;
(2)求S2△OAF+S2△OBD的最小值.

分析 (1)設(shè)出A、B坐標(biāo),利用$\overrightarrow{BF}$=4$\overrightarrow{FA}$,求出A、B坐標(biāo)之間的關(guān)系,然后求直線l的方程;
(2)求出S2OAF+S2△OBD的表達(dá)式,利用基本不等式求S2OAF+S2△OBD的最小值.

解答 解:(1)設(shè)A,B兩點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),
∵$\overrightarrow{BF}$=4$\overrightarrow{FA}$,
∴(1-x2,-y2)=4(x1-1,y1),
∴1-x2=4(x1-1),-y2=4y1…①
由題意,設(shè)直線AB的方程為y=k(x-1),代入拋物線方程,得ky2-4y-4k=0,
因?yàn)橹本l與C相交于A,B兩點(diǎn),所以k≠0,
則△=16+16k2>0,y1+y2=$\frac{4}{k}$,y1y2=-4,…②
由①②,得方程組k=±$\frac{4}{3}$,
∵A點(diǎn)在x軸下方,
∴直線l的方程為y=$\frac{4}{3}$(x-1);
(2)直線OB的方程為y=$\frac{{y}_{2}}{{x}_{2}}$x,即2px-y2y=0,
∵點(diǎn)D和點(diǎn)A關(guān)于x軸對(duì)稱(chēng),
∴D(x1,-y1),
∴D到直線OB的距離d=$\frac{|2p{x}_{1}+{y}_{1}{y}_{2}|}{\sqrt{4{p}^{2}+{{y}_{2}}^{2}}}$=$\frac{|2p{x}_{1}-4|}{\sqrt{2p(2p+{x}_{2})}}$,
∴S2△OBD=x2(x1-1)2,
∵直線AB的方程為y=k(x-1),代入拋物線方程,得k2x2-(2k2+4)x+k2=0,
∴x1x2=1
∵S2OAF=$\frac{1}{4}$×1×y12=x1,
∴S2OAF+S2△OBD=x1+=2x1+$\frac{1}{{x}_{1}}$-2≥2$\sqrt{2}$-2,
當(dāng)且僅當(dāng)2x1=$\frac{1}{{x}_{1}}$,即x1=$\frac{\sqrt{2}}{2}$時(shí),S2OAF+S2△OBD的最小值為2$\sqrt{2}$-2

點(diǎn)評(píng) 本題考查直線與拋物線的方程,考查向量知識(shí)的運(yùn)用,考查三角形面積的計(jì)算,考查基本不等式的運(yùn)用,考查轉(zhuǎn)化思想,函數(shù)與方程的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1
(1)若f(x)在$[{\frac{1}{4},\frac{1}{2}}]$上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a>$\frac{1}{3}$時(shí),設(shè)函數(shù)g(x)=x2-2x-1,若?x1∈[1,2],?x2∈[0,2],使f(x1)≥g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當(dāng)a=-2時(shí),求函數(shù)f(x)極值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線θ=$\frac{π}{3}$與曲線C2交于點(diǎn)D(4,$\frac{π}{3}}$).
(1)求曲線C1的普通方程及C2的直角坐標(biāo)方程;
(2)在極坐標(biāo)系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}}$)是曲線C1上的兩點(diǎn),求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知sinα+cosα=$\frac{1}{2}$,求下列各式的值:
(1)sinαcosα;
(2)sin3α+cos3α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,且與橢圓x2+$\frac{y^2}{2}$=1有相同離心率. 
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn),且橢圓C上存在點(diǎn)Q,滿足$\overrightarrow{OA}+\overrightarrow{OB}=λ\overrightarrow{OQ}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:|x-1|<c(c>0);命題q:|x-5|>2,且p是q的既不充分也不必要條件,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為2π的偶函數(shù)D.最小正周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$).
(1)若x∈R,求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{3}$]求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案