已知函數(shù)f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
在R上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)是分段函數(shù),要分x≥1,x<1兩種情況討論,當(dāng)x<1時(shí),又分a=0,a≠0兩種情況,綜合可得結(jié)論.
解答: 解:∵函數(shù)f(x)是分段函數(shù),要分x≥1,x<1兩種情況討論,
當(dāng)x≥1時(shí),f(x)=x2+ax+1在R上是單調(diào)遞增函數(shù),
∴f(x)=2x+a≥0,解得x≥-
a
2
,而x≥1,∴a≥-2①,
當(dāng)x<1時(shí),又分a=0,a≠0兩種情況:
Ⅰ:a=0時(shí),f(x)=x+1是增函數(shù),滿足題意②;
Ⅱ:a≠0時(shí),f(x)=ax2+x+1是二次函數(shù),根據(jù)二次函數(shù)的圖象及性質(zhì),需滿足對(duì)稱軸x=-
1
2a
≥1且a<0
-
1
2a
≥1
a<0
,解得-
1
2
≤a<0③
綜合①②③得-
1
2
≤a≤0;
故答案為:[-
1
2
,0].
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的圖象及性質(zhì),采用分類討論的思想解決此題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)圓錐的側(cè)面積是它的內(nèi)切球的表面積的2倍,求它的側(cè)面積與底面積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費(fèi)用支出x與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為10銷售收入y的值.
參考數(shù)據(jù):
5
i=1
xiyi=1380,
n
i=1
xi2=145,參考公式:
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
 
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有8個(gè)大小質(zhì)地相同的球,其中4個(gè)紅球、4個(gè)白球,現(xiàn)從中任意取出四個(gè)球,設(shè)X為取得紅球的個(gè)數(shù).
(1)求X的分布列;
(2)若摸出4個(gè)都是紅球記5分,摸出3個(gè)紅球記4分,否則記2分.求得分的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面上有兩點(diǎn)F1,F(xiàn)2,且|F1F2|=6,又平面上一動(dòng)點(diǎn)P滿足|PF1|+|PF2|=10,試建立適當(dāng)?shù)淖鴺?biāo)系寫出P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(
π
2
,π),tan(α+
π
4
)=
1
7
,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=K,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
OA
+
OB
),則動(dòng)點(diǎn)P的軌跡為圓;
③0<θ<
π
4
,則雙曲線C1
x2
cos2θ
-
y2
sin2θ
=1與C2
y2
sin2θ
-
x2
sin2θtan2θ
=1的離心率相同;
④已知兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)和一動(dòng)點(diǎn)P,若|PF1|•|PF2|=a2(a≠0),則點(diǎn)P的軌跡關(guān)于原點(diǎn)對(duì)稱;
其中真命題的序號(hào)為
 
(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
1
2
sin15°-
3
2
cos15°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程
y
=0.67x+54.9.
零件數(shù)x(個(gè)) 10 20 30 40 50
加工時(shí)間y(分) 62 M 75 81 84
現(xiàn)發(fā)現(xiàn)表中有一個(gè)數(shù)據(jù)M模糊看不清,請(qǐng)你推斷出該數(shù)據(jù)的值為
 

查看答案和解析>>

同步練習(xí)冊答案