已知函數(shù)f(x)(x∈R)的圖象上任一點(x0,y0)處切線的方程為:y-y0=(x0-2)( x0-1)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是( 。
A、(1,2)
B、(-∞,1]
C、[2,+∞)
D、(-∞,-1)
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由切線方程y-y0=(x0-2)(x0-1)(x-x0),可知任一點的導(dǎo)數(shù)為f′(x)=(x-2)(x-1),然后由f′(x)<0,可求單調(diào)遞減區(qū)間.
解答: 解:因為函數(shù)f(x),(x∈R)上任一點(x0y0)的切線方程為y-y0=(x0-2)(x0-1)(x-x0),
所以函數(shù)在任一點(x0y0)的切線斜率為k=(x0-2)(x0-1),
即知任一點的導(dǎo)數(shù)為f′(x)=(x-2)(x-1).
由f′(x)=(x-2)(x-1)<0,得1<x<2,
即函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,2).
故選:A.
點評:本題的考點是利用導(dǎo)數(shù)研究曲線上某點切線方程,先由切線方程得到切線斜率,進而得到函數(shù)的導(dǎo)數(shù),然后解導(dǎo)數(shù)不等式,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為R上的偶函數(shù),且當(dāng)x∈(-∞,0)時,f(x)=x(x-1),則當(dāng)x∈(0,+∞)時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O:x2+y2=4及點A(1,3),BC為⊙O的任意一條直徑,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2-x,則f(x)是( 。
A、奇函數(shù)且是增函數(shù)
B、奇函數(shù)且是減函數(shù)
C、偶函數(shù)且是增函數(shù)
D、偶函數(shù)且是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某簡單組合體的三視圖如圖所示,則該組合體的體積為(  )
A、
2
3
3
(π+2)
B、
4
3
3
(π+2)
C、
2
3
3
(π+
2
D、
8
3
3
(π+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-sinβ=
6
3
,cosα-cosβ=
3
3
,則cos2
α-β
2
等于( 。
A、
3
4
B、
1
2
C、
1
16
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2<4x},集合B={y|y=-x2,-1≤x≤2},則集合∁R(A∩B)=( 。
A、RB、{0}
C、∅D、{x|x≥4或x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的是( 。
A、?0∈R,e x0≤0
B、?x∈R,2x>x2
C、a-b>0是a3-b3>0的充分不必要條件
D、ab>1是a>1且b>1的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|log2x<2},B={x|
1
3
<3x
3
},則A∩B為( 。
A、(0,
1
2
B、(0,
2
C、(-1,
1
2
D、(-1,
2

查看答案和解析>>

同步練習(xí)冊答案