已知函數(shù)f(x)=2x-2-x,則f(x)是( 。
A、奇函數(shù)且是增函數(shù)
B、奇函數(shù)且是減函數(shù)
C、偶函數(shù)且是增函數(shù)
D、偶函數(shù)且是減函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先求出定義域,再運(yùn)用定義判斷函數(shù)的奇偶性,再應(yīng)用函數(shù)的單調(diào)性定義,判斷函數(shù)的單調(diào)性,注意分:設(shè)自變量-作差-變形-確定符號(hào)-下結(jié)論.
解答: 解:函數(shù)f(x)=2x-2-x的定義域?yàn)镽,
∵f(-x)=2-x-2x=-f(x),
∴f(x)是奇函數(shù),
又設(shè)x1<x2,f(x1)-f(x2)=(2x1-2-x1)-(2x2-2-x2)=(2x1-2x2)+(2-x2-2-x1
∵x1<x2,∴2x1<2x2,即2x1-2x2<0,
∴-x1>-x2,2-x1>2-x2,即2-x2-2-x1<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函數(shù)f(x)是R上的增函數(shù).
故選A.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)及應(yīng)用,考查函數(shù)的奇偶性的定義,應(yīng)注意定義域必須關(guān)于原點(diǎn)對(duì)稱,及函數(shù)的單調(diào)性的定義,注意解題步驟,該題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)對(duì)函數(shù)f(x)=xsinx進(jìn)行研究后,得出以下結(jié)論:
①函數(shù)y=f(x)的圖象是軸對(duì)稱圖形;
②對(duì)任意實(shí)數(shù)x,|f(x)|≤|x|均成立;
③函數(shù)y=f(x)的圖象與直線y=z有無窮多個(gè)公共點(diǎn),且任意相鄰兩點(diǎn)的距離相等;
④當(dāng)常數(shù)k滿足|k|>1時(shí),函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個(gè)公共點(diǎn).
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.若AB=6,BC=4,則DE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為(  )
A、[-3,+∞)
B、(-3,+∞)
C、(-4,+∞)
D、[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次防恐演習(xí)中,某射手擊中目標(biāo)的概率為0.8,每次射擊的結(jié)果相互獨(dú)立,現(xiàn)射擊99次,則他最有可能射中目標(biāo)( 。┐危
A、99B、80
C、79或80D、79

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜三棱柱ABC-A1B1C1中,A0,B0分別為側(cè)棱AA1,BB1上的點(diǎn),且知BB0=A0A1,過A0,B0,C1的截面將三棱柱分成上下兩個(gè)部分體積之比為( 。
A、2:1B、4:3
C、3:2D、1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)的圖象上任一點(diǎn)(x0,y0)處切線的方程為:y-y0=(x0-2)( x0-1)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是( 。
A、(1,2)
B、(-∞,1]
C、[2,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)E在線段BB1和線段A1B1上移動(dòng),∠EAB=θ,θ∈(0,
π
2
),過直線AE,AD的平面ADFE將正方體分成兩部分,記棱BC所在部分的體積為V(θ),則函數(shù)V=V(θ),θ∈(0,
π
2
)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a<0)對(duì)于一切實(shí)數(shù)x都有f(1-x)=f(1+x),而且f(-1)<0,f(0)>0,則有(  )
A、a+b+c<0
B、c<2b
C、abc>0
D、b<a+c

查看答案和解析>>

同步練習(xí)冊(cè)答案