【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

【答案】(1) ; 為參數(shù);(2).

【解析】

(1)利用極角的定義、直線的傾斜角的定義以及兩直線過原點,可得到直線與直線的直角坐標方程;曲線的極坐標方程兩邊同乘以利用 即可得其直角坐標方程,然后化為參數(shù)方程即可;(2)聯(lián)立,得,同理,利用三角形面積公式可得結果.

(1)依題意,直線直角的坐標方程為

直線直角的坐標方程為,

,

,

,

曲線的參數(shù)方程為為參數(shù)).

(2)聯(lián)立,,

同理,

,

的面積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求不等式的解集;

(2)若不等式對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱臺中,平面ABCD,四邊形ABCD為平行四邊形,,,,EDC中點.

1)求證:平面;

2)求證:;

3)求三棱錐的高.

(注:棱臺的兩底面相似)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,100張獎券為一個開獎單位,每個開獎單位設特等獎1個,一等獎10個,二等獎50個,設一張獎券中特等獎、一等獎、二等獎的事件分別為A,BC,可知其概率平分別為

1)求1張獎券中獎的概率;

2)求1張獎券不中特等獎且不中一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發(fā)布成績使用等級制,各等級劃分標準見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級

A

B

C

D

規(guī)定:A,BC三級為合格等級,D為不合格等級為了解該校高三年級學生身體素質情況,從中抽取了n名學生的原始成績作為樣本進行統(tǒng)計.

按照,,,的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的x,y的值,并估計該校高一年級學生成績是合格等級的概率;

根據(jù)頻率分布直方圖,求成績的中位數(shù)精確到

在選取的樣本中,從A,D兩個等級的學生中隨機抽取2名學生進行調研,求至少有一名學生是A等級的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產品的年收益與投資額成正比,其關系如圖1;投資股票等風險型產品的年收益與投資額的算術平方根成正比,其關系如圖2.

1)分別寫出兩種產品的年收益的函數(shù)關系式;

2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關系:.若不建隔熱層,每年的能源消耗費用為萬元.為隔熱層建造費用與年的能源消耗費用之和.

1)求的值及的表達式;

2)隔熱層修建多厚時,總費用最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y2=4x的焦點為F,拋物線上有三個動點A,B,C.

1)若,求;

2)若AB的垂直平分線經(jīng)過一個定點Q,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

0.2

0.3

0.3

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為300元;分4期或5期付款,其利潤為400元,表示經(jīng)銷一件該商品的利潤.

1)求事件:“購買該商品的3位顧客中,至少有1位采用期付款”的概率;

2)求的分布列、期望和方差.

查看答案和解析>>

同步練習冊答案