10.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2absinC=$\sqrt{3}$(b2+c2-a2),若a=$\sqrt{13}$,c=3,則△ABC的面積為( 。
A.3B.3$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3\sqrt{3}}{2}$

分析 根據(jù)正弦定理和余弦定理求出角A的值,結(jié)合三角形的面積公式進(jìn)行求解即可.

解答 解:由2absinC=$\sqrt{3}$(b2+c2-a2),得2absinC=$\sqrt{3}$•$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$•2bc=2$\sqrt{3}$bccosA,
asinC=$\sqrt{3}$ccosA,
即sinAsinC=$\sqrt{3}$sinCcosA,
則tanA=$\sqrt{3}$,則A=$\frac{π}{3}$,
由余弦定理得a2=b2+c2-2bccosA,
即13=b2+9-6b×$\frac{1}{2}$,
整理得b2-3b-4=0,得b=4或b=-1(舍),
則三角形的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×3×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查解三角形的應(yīng)用,根據(jù)正弦定理,余弦定理以及三角形的面積公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=10,S5≥S6,下列四個(gè)命題中,假命題是( 。
A.公差d的最大值為-2B.S7<0
C.記Sn的最大值為K,K的最大值為30D.a2016>a2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=1+lnx-aex
(Ⅰ)若曲線y=f(x)在x=1處的切線與x軸平行,求實(shí)數(shù)a的值;
(Ⅱ)若對(duì)任意x∈(0,+∞),不等式f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=x2-cosx,若a=f(30.3),b=f(logπ3),c=f(log3$\frac{1}{9}$),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.給出下列四個(gè)命題:
①已知x∈R,則“x>1”是“x>2”的充分不必要條件;
②命題“若x≥1,則$\frac{1}{x}$≤1”的否命題是假命題;
③已知x∈(0,π),則y=sinx+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$;
④設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)非零向量,則“$\overrightarrow{a}$•$\overrightarrow$<0”是“$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角”的充分不必要條件.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題中,正確的是( 。
A.對(duì)分類變量X與Y,隨機(jī)變量K2的觀測(cè)值k0越大,則判斷“X與Y相關(guān)”的把握程度越小
B.命題p:?x0>0,使得x0-1<lnx0,則¬p是真命題
C.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)非零向量,則“$\overrightarrow{a}$•$\overrightarrow$<0”是“$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角”的充分不必要條件
D.α,β是兩個(gè)平面,m,n是兩條直線,若m⊥n,m⊥α,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=$\frac{4}{3}$x3+bx2+2x-5有3個(gè)單調(diào)區(qū)間,則實(shí)數(shù)b的取值范圍(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$\overline z=1+i$(i是虛數(shù)單位),則在復(fù)平面內(nèi),${z^2}+\frac{2}{z}$對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某體育彩票規(guī)定:從01到36個(gè)號(hào)中抽出7個(gè)號(hào)為一注,每注2元.某人想先選定吉利號(hào)18,然后再?gòu)?1到17個(gè)號(hào)中選出3個(gè)連續(xù)的號(hào),從19到29個(gè)號(hào)中選出2個(gè)連續(xù)的號(hào),從30到36個(gè)號(hào)中選出1個(gè)號(hào)組成一注.若這個(gè)人要把這種要求的號(hào)全買,至少要花的錢數(shù)為( 。
A.2000元B.3200元C.1800元D.2100元

查看答案和解析>>

同步練習(xí)冊(cè)答案