1.直線x-y+1=0的傾斜角為(  )
A.-45°B.-30°C.45°D.135°

分析 把已知直線的方程變形后,找出直線的斜率,根據(jù)直線斜率與傾斜角的關(guān)系,即直線的斜率等于傾斜角的正切值,得到傾斜角的正切值,由傾斜角的范圍,利用特殊角的三角函數(shù)值即可求出傾斜角的度數(shù).

解答 解:由直線x-y+1=0變形得:y=x+1
所以該直線的斜率k=1,
設(shè)直線的傾斜角為α,即tanα=1,
∵α∈[0,180°),
∴α=45°.
故選C.

點評 此題考查了直線的傾斜角,以及特殊角的三角函數(shù)值.熟練掌握直線傾斜角與斜率的關(guān)系是解本題的關(guān)鍵,同時注意直線傾斜角的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-(a+4)x+a
(1)求實數(shù)a的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.計算機通常使用若干個數(shù)字0到1排成一列來表示一個物理編號,現(xiàn)有4個“0”與4個“1”排成一列,那么用這8個數(shù)字排成一列能表示的物理信號的個數(shù)是( 。
A.140B.110C.70D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若焦點在x軸上的橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{5}=1\;(a>0)$的離心率為$\frac{2}{3}$,則a的值為( 。
A.9B.6C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱AA1⊥平面ABC,E,F(xiàn)分別為A1B1,A1C1的中點.
(Ⅰ)求證:B1C1∥面BEF;
(Ⅱ)過點A存在一條直線與平面BEF垂直,請你在圖中畫出這條直線(保留作圖痕跡,不必說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C:y2=4x的焦點為F,P(x0,y0)是C上一點,且$|PF|=\frac{3}{2}{x_0}$,則x0的值為( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點F1為圓(x+1)2+y2=16的圓心,N為圓F1上一動點,點M,P分別是線段F1N,F(xiàn)2N上的點,且滿足$\overrightarrow{MP}$•$\overrightarrow{{F}_{2}N}$=0,$\overrightarrow{{F}_{2}N}$=2$\overrightarrow{{F}_{2}P}$.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)過點F2的直線l(與x軸不重合)與軌跡E交于A,C兩點,線段AC的中點為G,連接OG并延長交軌跡E于B點(O為坐標(biāo)原點),求四邊形OABC的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,$\overrightarrow{i}$,$\overrightarrow{j}$分別是與x軸、y軸方向相同的單位向量,已知$\overrightarrow{OA}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{OB}$=3$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{OC}$=2t$\overrightarrow{i}$+(t+5)$\overrightarrow{j}$,若$\overrightarrow{AB}$與$\overrightarrow{AC}$共線,則實數(shù)t的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知正實數(shù)a,b滿足a+b=2,則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.$\frac{{3+2\sqrt{2}}}{2}$B.3C.$\frac{3}{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案