1.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m),若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$•$\overrightarrow$等于( 。
A.1B.2C.5D.-1

分析 根據(jù)條件得出${\overrightarrow{a}}^{2}=\overrightarrow{a}•\overrightarrow$=5.

解答 解:∵($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,∴($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,
∴$\overrightarrow{a}•\overrightarrow={\overrightarrow{a}}^{2}$=22+12=5.
故答案為:5.

點評 本題考查了平面向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a<0,則x0滿足關(guān)于x的方程ax=b的充要條件是( 。
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知Sn為等差數(shù)列{an}的前n項和,a1=-1,S4=14,則a2等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:若α為第一象限角,β為第二象限角,則α<β;命題q:在等比數(shù)列{an}中,若a2<a1,則數(shù)列{an}為遞減數(shù)列.下列命題為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)當(dāng)n=2時,若不等式f(x)≤kx對一切x∈(0,1]恒成立,求實數(shù)k的取值范圍;
(2)試判斷函數(shù)f(x)在(${\frac{1}{2}$,1)內(nèi)零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.cos(-420°)cos300°=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\frac{2si{n}^{2}35°-1}{cos10°-\sqrt{3}sin10°}$的值為( 。
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax-bx+$\frac{3}{2}$x2-5(a>0,且a≠1),f′(x)為f(x)的導(dǎo)函數(shù),f′(0)=0.
(Ⅰ)求a,b滿足的關(guān)系式(用a表示b);
(Ⅱ)當(dāng)a=e(e為自然對數(shù)的底數(shù))時,若不等式f(x)<0在開區(qū)間(n1,n2)上恒成立(n1,n2∈Z),求n2-n1的最大值;
(Ⅲ)當(dāng)a>1時,若存在x1,x2∈[-1,1],使|f(x1)-f(x2)|≥e-$\frac{1}{2}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{2}{1-i}$+i,則z的共軛復(fù)數(shù)為( 。
A.1+iB.1+2iC.1-2iD.2+3i

查看答案和解析>>

同步練習(xí)冊答案