分析 (1)由題意可得$\overrightarrow{OB}$=$\overrightarrow{DA}$,四邊形ABOD為平行四邊形,即可得到所求向量;
(2)求得C(1,0),D($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),可得向量$\overrightarrow{a}$的坐標(biāo),求得B,D的坐標(biāo),可得$\overrightarrow{BD}$即為所求.
解答 解:(1)由題意可得$\overrightarrow{OB}$=$\overrightarrow{DA}$,
四邊形ABOD為平行四邊形,
即有$\overrightarrow{BA}$=$\overrightarrow{OD}$;
(2)由題意可得C(1,0),D($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
可得$\overrightarrow{a}$=$\overrightarrow{OC}$+$\overrightarrow{OD}$=(1,0)+($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)=($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
向量$\overrightarrow{a}$的負(fù)向量為(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$),
由$\overrightarrow{BD}$=$\overrightarrow{OD}$-$\overrightarrow{OB}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)-(-1,0)=($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
即有$\overrightarrow{BD}$即為所求.
點評 本題考查向量的基本概念,以及向量的加減運算,注意運用平行四邊形法則和坐標(biāo)運算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“p∧q”是真命題 | B. | 命題“p∧(¬q)”是真命題 | ||
C. | 命題“(¬p)∧q”為真命題 | D. | 命題“(¬p)∧(¬q)”是真命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com