3.設集合A={3,log2(a-2)},B={a,a+b},若A∩B={1},則b的值為( 。
A.-3B.3C.1D.-1

分析 利用兩個集合的交集的定義求得a  的值和 b 的值,

解答 解:∵集合A={3,log2(a-2)},B={a,a+b},A∩B={1},
∴l(xiāng)og2(a-2)=1,∴a=4,
∴a+b=1,
∴b=-3,
故選:A.

點評 本題考查集合的表示方法、兩個集合的并集的定義和求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.某校高二文科100名學生參加了語數(shù)英學科競賽,年級為了解這些學生語文和數(shù)學成績的情況,將100名學生的語文和數(shù)學成績統(tǒng)計如表:
語文
優(yōu)及格
數(shù)學優(yōu)13m5
12n9
及格10147
(I)若數(shù)學成績的優(yōu)秀率為35%,現(xiàn)利用隨機抽樣從數(shù)學成績“優(yōu)秀”的學生中抽取1名學生,求該生語文成績?yōu)椤凹案瘛钡母怕剩?br />(II)在語文成績?yōu)椤傲肌钡膶W生中,已知m≥10,n≥10,求數(shù)學成績“優(yōu)”比“良”的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y-2x≤0}\\{2x+y≤6}\\{y≥\frac{1}{2}}\end{array}\right.$,則2x+$\frac{1}{y}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{{e}^{f(|x|+1)},x<1}\end{array}\right.$,(e為自然對數(shù)的底數(shù)),則f(e)=1,函數(shù)y=f(f(x))-1的零點有3個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$sin({α-\frac{π}{3}})=\frac{{\sqrt{3}}}{3}$,則cos$({2α+\frac{π}{3}})$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{3}{7}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設{an}是單調(diào)遞增的等差數(shù)列,Sn為其前n項和,且滿足3S4=2S5,a5+2是a3,a12的等比中項.
(I)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn}滿足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}={3^{n+1}}-3({n∈{N^*}})$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若復數(shù)z滿足iz=1+i,則z的共軛復數(shù)$\overline{z}$在復平面內(nèi)所對應點的坐標為( 。
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題為真命題的是(  )
A.?x0∈R,使得x02-x0+2=0
B.命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
C.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)
D.在△ABC中,“A=B”是“sinA=sinB”的充要條件

查看答案和解析>>

同步練習冊答案