分析 由條件利用同角三角函數(shù)的基本關(guān)系求得tan$\frac{x}{2}$ 的值,再利用二倍角的正弦公式求得1+sinx的值
解答 解:∵4cosx=3(1+sinx),∴4(${cos}^{2}\frac{x}{2}$-${sin}^{2}\frac{x}{2}$)=3${(sin\frac{x}{2}+cos\frac{x}{2})}^{2}$,即 4(cos$\frac{x}{2}$-sin$\frac{x}{2}$)=3(cos$\frac{x}{2}$+sin$\frac{x}{2}$),
即 4-4tan$\frac{x}{2}$=3+3tan$\frac{x}{2}$,求得tan$\frac{x}{2}$=$\frac{1}{7}$.
∴1+sinx=1+$\frac{2sin\frac{x}{2}cos\frac{x}{2}}{{cos}^{2}\frac{x}{2}{+sin}^{2}\frac{x}{2}}$=1+$\frac{2tan\frac{x}{2}}{1{+tan}^{2}\frac{x}{2}}$=1+$\frac{\frac{2}{7}}{1+\frac{1}{49}}$=$\frac{32}{25}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,m?α,則m∥β | B. | 若m⊥α,n⊥α,n⊥β,則m⊥β | ||
C. | 若m∥α,n∥β且α⊥β,則m⊥n | D. | 若α∥β,m⊥α,n∥β,則m⊥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com