正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且2
Sn
=an+1
,則數(shù)列{an}的通項(xiàng)公式為( 。
分析:仿寫一個等式,兩式相減,得到數(shù)列的項(xiàng)的遞推關(guān)系,據(jù)此遞推關(guān)系,判斷出數(shù)列是等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
解答:解:由2
Sn
=an+1
,n=1代入得a1=1,
兩邊平方得4Sn=(an+1)2         ①,
①式中n用n-1代入得4Sn-1=(an-1+1)2(n≥2)②,
①-②,得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,
[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
由正數(shù)數(shù)列{an},得an-an-1=2,
所以數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,有an=2n-1.
故選C.
點(diǎn)評:本題主要考查了數(shù)列的遞推關(guān)系,若知數(shù)列的和與項(xiàng)的遞推關(guān)系求通項(xiàng),常采用仿寫的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且2
Sn
=an+1

(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan_+1
,{bn}的前n項(xiàng)和為Tn,若對一切正整數(shù)n都有Tn<m,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且對任意的正整數(shù)n滿足2
Sn
=an+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且存在正數(shù)t,使得對于任意的正整數(shù)n,都有
tSn
=
t+an
2
成立.若
lim
n→+∞
Sn
an
<t
,則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an} 的前n項(xiàng)和為 Sn,且對任意的n∈N*,Sn是an2和an的等差中項(xiàng).
(1)求數(shù)列{an} 的通項(xiàng)公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整數(shù)m,使得不等式Sn-1005>
an22
對一切滿足n>m的正整數(shù)n都成立?若存在,則這樣的正整數(shù)m共有多少個?并求出滿足條件的最小正整數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足2
Sn
=an+1
,求an

查看答案和解析>>

同步練習(xí)冊答案