若P是兩條異面直線l,m外的任意一點,則下列命題:
①過點P有且只有一條直線與l,m都平行;
②過點P有且只有一條直線與l,m都垂直;
③過點P有且只有一條直線與l,m都相交;
④過點P有且只有一條直線與l,m都異面.
其中假命題的個數(shù)為( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應用
專題:空間位置關系與距離
分析:①通過反證法可以判定;②由異面直線公垂線的唯一性可以判定;③、④利用常見的圖形舉出反例即可.
解答: 解:①設過點P的直線為n,且
n∥l
n∥m
,∴l(xiāng)∥m,這與l、m異面矛盾,∴命題①錯誤;
②∵異面直線l、m有唯一的公垂線,∴過點P與公垂線平行的直線有且只有一條,∴命題②正確;
③如圖所示的正方體中,設AD為直線l,A′B′為直線m,若點P在P1點處,則無法作出直線與兩直線都相交,
∴選項C錯誤;
④如上圖所示的正方體中,若P在P2點,則由圖中可知直線CC′及D′P2均與l、m異面,
∴選項D錯誤;
 
∴以上假命題共有3個.
故選:C.
點評:本題考查了空間中的直線與直線的位置關系以及空間想象能力,解題時應借助于常見的空間圖形解答,是易錯題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

任取實數(shù)a、b∈[-1,1],則a、b滿足|a-2b|≤2的概率為(  )
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F為橢圓C:
x2
2
+y2
=1的左焦點,點P為橢圓C上任意一點,點Q的坐標為(4,3),則|PQ|+|PF|取最大值時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為零的等差數(shù)列{an}的前n項和為Sn,若a6=S3,則
S5
a5
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a+b=1(其中a>0,b>0),則
1
a
+
2
b
的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)三個函數(shù)f(x)=2x,g(x)=2x,h(x)=log2x給出以下五句話:
(1)f(x),g(x),h(x)在其定義域上都是增函數(shù);
(2)f(x)的增長速度始終不變;
(3)f(x)的增長速度越來越快;
(4)g(x)的增長速度越來越快;
(5)h(x)的增長速度越來越慢.
其中正確的個數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,P為不等式
y≤1
x+y-2≥0
x-y-1≤0
所表示的平面區(qū)域上一動點,則直線OP斜率的最大值為( 。
A、2
B、1
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(x-
π
6
)sin(x+
π
3
),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若A=
π
4
,銳角C滿足f(
C
2
+
π
6
)=
1
2
,求
BC
AB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點是F,準線是l,過焦點的直線與拋物線交于不同兩點A,B,直線OA(O為原點)交準線l于點M,設A(x1,y1),B(x2,y2).
(1)求證:y1y2是一個定值;
(2)求證:直線MB平行于x軸.

查看答案和解析>>

同步練習冊答案