已知函數(shù)f(x)=2sin(x-
π
6
)sin(x+
π
3
),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若A=
π
4
,銳角C滿足f(
C
2
+
π
6
)=
1
2
,求
BC
AB
的值.
考點(diǎn):正弦定理,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:(Ⅰ)函數(shù)f(x)解析式變形后,利用二倍角的正弦函數(shù)公式化簡,找出ω的值,代入周期公式即可求出函數(shù)f(x)的最小正周期;
(Ⅱ)根據(jù)第一問確定出的解析式,由f(
C
2
+
π
6
)=
1
2
,求出C的度數(shù),再由A的度數(shù),利用正弦定理即可求出所求式子的值.
解答: 解:(Ⅰ)f(x)=2sin(x-
π
6
)sin[
π
2
+(x-
π
6
)]=2sin(x-
π
6
)cos(x-
π
6
)=sin(2x-
π
3
),
∵ω=2,∴函數(shù)f(x)的最小正周期T=
2
=π;
(Ⅱ)由(Ⅰ)得,f(
C
2
+
π
6
)=sin[2(
C
2
+
π
6
)-
π
3
]=sinC,
由已知sinC=
1
2
,
又角C為銳角,
∴C=
π
6
,
∵A=
π
4

∴由正弦定理
BC
sinA
=
AB
sinC
,得
BC
AB
=
sinA
sinC
=
2
2
1
2
=
2
點(diǎn)評(píng):此題考查了正弦定理,以及三角函數(shù)的周期性及其求法,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上是奇函數(shù),且f(x+3)=-f(x),當(dāng)0<x<2時(shí),f(x)=x2,求f(0),f(-3),f(2013).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是兩條異面直線l,m外的任意一點(diǎn),則下列命題:
①過點(diǎn)P有且只有一條直線與l,m都平行;
②過點(diǎn)P有且只有一條直線與l,m都垂直;
③過點(diǎn)P有且只有一條直線與l,m都相交;
④過點(diǎn)P有且只有一條直線與l,m都異面.
其中假命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只螞蟻在三邊長分別為3,4,5的三角形內(nèi)爬行,則此螞蟻距離三角形三個(gè)頂點(diǎn)的距離均超過1的概率為( 。
A、1-
π
6
B、1-
π
12
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1,l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A,B.
(1)若l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程及離心率;
(2)求
FA
AP
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)為A1,A2,B1,B2,焦點(diǎn)為F1,F(xiàn)2,|A1B2|=
7
S?A1B1A2B2=2S ?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線m過Q(1,1),且與橢圓相交于M,N兩點(diǎn),當(dāng)Q是MN的中點(diǎn)時(shí),求直線m的方程.
(Ⅲ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交于P點(diǎn)且與橢圓相交于兩點(diǎn)A,B的直線,|
OP
|=1
,是否存在上述直線l使以AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的離心率e=
3
2
,短軸長為2,點(diǎn)A(x1,y1),B(x2,y2)是橢圓上的兩點(diǎn),
m
=(
x1
b
,
y1
a
)
,
n
=(
x2
b
,
y2
a
)
,且
m
n
=0

(1)求橢圓方程;
(2)若直線AB過橢圓的焦點(diǎn)F(0,c)(c為半焦距),求直線AB的斜率;
(3)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,an>0,a1=
2
3
,且-
3
a2
,
1
a3
,
1
a4
成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn•log3(1-Sn+1)=1,求適合方程b1b2+b2b3+…+bnbn+1=
25
51
的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線的方程為y2=2px(p>0).
(1)當(dāng)p=4時(shí),求該拋物線上縱坐標(biāo)為2的點(diǎn)到其焦點(diǎn)F的距離;
(2)已知該拋物線上一點(diǎn)P的縱坐標(biāo)為t(t>0),過P作兩條直線分別交拋物線與A(x1,y1)、B(x2,y2),當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),求證:
y1+y2
t
為定值;并用常數(shù)p、t表示直線AB的斜率.

查看答案和解析>>

同步練習(xí)冊答案