6.如圖所示的流程圖,當(dāng)輸入n的值為10時(shí),則輸出的S的值為30.

分析 由已知中的程序框圖及已知可得:進(jìn)入循環(huán)的條件為n≥2,模擬程序的運(yùn)行結(jié)果,即可得到輸出的S值.

解答 解:模擬程序的運(yùn)行,可得
n=10,S=0
不滿足條件n<2,執(zhí)行循環(huán)體,S=10,n=8
不滿足條件n<2,執(zhí)行循環(huán)體,S=18,n=6
不滿足條件n<2,執(zhí)行循環(huán)體,S=24,n=4
不滿足條件n<2,執(zhí)行循環(huán)體,S=28,n=2
不滿足條件n<2,執(zhí)行循環(huán)體,S=30,n=0
滿足條件n<2,退出循環(huán),輸出S的值為30.
故答案為:30.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,在寫(xiě)程序的運(yùn)行結(jié)果時(shí),我們常使用模擬循環(huán)的變法,但程序的循環(huán)體中變量比較多時(shí),要用表格法對(duì)數(shù)據(jù)進(jìn)行管理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.傳承傳統(tǒng)文化再掀熱潮,在剛剛過(guò)去的新春假期中,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為   主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏,如圖的莖葉圖是兩位選手在個(gè)人追逐賽中的比賽得    分,則下列說(shuō)法正確的是( 。
A.甲的平均數(shù)大于乙的平均數(shù)B.甲的中位數(shù)大于乙的中位數(shù)
C.甲的方差大于乙的方差D.甲的平均數(shù)等于乙的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)$z=\frac{i}{3+i}$,則復(fù)數(shù)z在復(fù)平面中對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知tanα=2,則$cos2α+sin({\frac{π}{2}+α})cos({\frac{3π}{2}-α})$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=1-an
(1)證明:{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若bn=log2an,令${c_n}=\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x>0}\\{0,x=0}\\{2x-1,x<0}\end{array}\right.$,則不等式f(x2-2)+f(x)<0的解集為(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={a1,a2,…an}(n∈N*),規(guī)定:若集合A1∪A2∪…∪Am=A(m≥2,m∈N*),則稱(chēng){A1,A2,…,Am}為集合A的一個(gè)分拆,當(dāng)且僅當(dāng):A1=B1,A2=B2,…Am=Bm時(shí),{A1,A2,…,Am}與{B1,B2,…,Bm}為同一分拆,所有不同的分拆種數(shù)記為fn(m).例如:當(dāng)n=1,m=2時(shí),集合A={a1}的所有分拆為:{a1}∪{a1},{a1}∪∅,∅∪{a3},即f1(2)=3.
(1)求f2(2);
(2)試用m、n表示fn(m);
(3)證明:$\sum_{i=1}^{m}$fn(i)與m同為奇數(shù)或者同為偶數(shù)(當(dāng)i=1時(shí),規(guī)定fn(1)=1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{bn}為等比數(shù)列,且b1008=e(e為自然對(duì)數(shù)的底數(shù)),數(shù)列{an}首項(xiàng)為1,且an+1=an•bn,則lna2016的值為2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若集合A={x||x|<1 },B={x|$\frac{1}{x}$≥1},則A∪B=(  )
A.(-1,1]B.[-1,1]C.(0,1)D.(-∞,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案