【題目】給出下列四個(gè)命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域?yàn)閇1,2],則函數(shù)y=f( )定義域?yàn)閇4,8]
其中正確命題的序號(hào)是 . (填上所有正確命題的序號(hào))

【答案】①④
【解析】解:①由2﹣x2>0得﹣ <x< ,則函數(shù)的定義域?yàn)椋ī? , ),
則函數(shù)y= = = ,則f(﹣x)= =﹣ =﹣f(x),則函數(shù)f(x)為奇函數(shù);故①正確,
②y=2 ≥20=1,即函數(shù)的值域是[1,+∞),故②錯(cuò)誤,
③函數(shù)y= 在定義域內(nèi)不是單調(diào)函數(shù),故③錯(cuò)誤;
④若函數(shù)f(2x)的定義域?yàn)閇1,2],則1≤x≤2,則2≤2x≤4,即函數(shù)f(x)的定義域?yàn)閇2,4],
由2≤ ≤4,得4≤x≤8,即函數(shù)y=f( )定義域?yàn)閇4,8],故④正確,
所以答案是:①④
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是互不相等的非零實(shí)數(shù),求證:由,,確定的三條拋物線至少有一條與軸有兩個(gè)不同的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取某校一個(gè)年級(jí)的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)的測(cè)試,將數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知圖中從左到右前三個(gè)小組的頻率分別為0.1,0.3,0.4,且第一小組的頻數(shù)為5.

(1)求第四小組的頻率;

(2)求參加這次測(cè)試的學(xué)生的人數(shù);

(3)若一分鐘跳繩次數(shù)在75次以上(含75次)為達(dá)標(biāo),試估計(jì)該年級(jí)學(xué)生跳繩測(cè)試的達(dá)標(biāo)率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R,|a|≤1.已知函數(shù)f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).(14分)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)y=g(x)和y=ex的圖象在公共點(diǎn)(x0 , y0)處有相同的切線,
(i)求證:f(x)在x=x0處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式g(x)≤ex在區(qū)間[x0﹣1,x0+1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要制作一個(gè)容積為2π m3的圓柱形儲(chǔ)油罐(有蓋),為使所用的材料最省,它的底面半徑與高分別為 ( )

A. 0.5 m,1 m B. 1 m,1 m

C. 1 m,2 m D. 2 m,2 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在創(chuàng)建全國(guó)旅游城市的活動(dòng)中,對(duì)一塊以O為圓心,R(R為常數(shù),單位:)為半徑的半圓形荒地進(jìn)行治理改造,其中弓形BCD區(qū)域(陰影部分)種植草坪,OBD區(qū)域用于兒童樂(lè)園出租,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55,兒童樂(lè)園出租的利潤(rùn)是每平方米95.

(1)設(shè)∠BOD=θ(單位:弧度),θ表示弓形BCD的面積S=f(θ).

(2)如果該市規(guī)劃辦邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處有極值0,則a的值為 ( )

A. 1 B. 2 C. 1或2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有48 000名學(xué)生,一次考試后數(shù)學(xué)成績(jī)服從正態(tài)分布,平均分為80,標(biāo)準(zhǔn)差為10,從理論上講,80分到90分之間有____.

查看答案和解析>>

同步練習(xí)冊(cè)答案