分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(II)利用“裂項求和”即可得出.
解答 解:(I)設(shè)等差數(shù)列{an}的公差為d≠0,
∵a2,a4-2,a6成等比數(shù)列.
∴$({a}_{4}-2)^{2}={a}_{2}•{a}_{6}$,
∴(1+3d-2)2=(1+d)(1+5d),
化為d2-3d=0,又d≠0,
解得d=3.
∴an=1+3(n-1)=3n-2.
(II)bn=$\frac{3}{(n+1)({a}_{n}+2)}$=$\frac{3}{(n+1)(3n-2+2)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{bn}的前n項和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com