16.已知3個(gè)數(shù)成等比數(shù)列,它們的和為14,積為64,求這3個(gè)數(shù).

分析 由等比數(shù)列的性質(zhì)可設(shè)這三個(gè)數(shù)為$\frac{4}{q}$,4,4q,由題意可得q的方程,解方程得q可得答案.

解答 解:∵3個(gè)數(shù)成等比數(shù)列,它們的和為14,積為64,
∴可設(shè)這三個(gè)數(shù)為$\frac{4}{q}$,4,4q,
則$\frac{4}{q}$+4+4q=14,解得q=2或q=$\frac{1}{2}$
當(dāng)q=2時(shí),這三個(gè)數(shù)為2,4,8;
當(dāng)q=$\frac{1}{2}$時(shí),這三個(gè)數(shù)為8,4,2

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\overrightarrow{a}$=(x,-1),$\overrightarrow$=(log23,1),若$\overrightarrow{a}$∥$\overrightarrow$,則4x+4-x=$\frac{82}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.畫出下列每個(gè)函數(shù)的圖象:
(1)f(x)=-x2+x+1,(-1<x≤1);
(2)f(x)=$\frac{1}{x}$+1,x∈(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知M={正整數(shù)},N={正奇數(shù)},映射f:a→b=2a-1(a∈M,b∈N),則映射在f下M中的元素11對(duì)應(yīng)N中的元素是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=2x-x2的最大值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x|x-a|.
(1)若a=0,畫出函數(shù)f(x)的圖象;
(2)若a>0,畫出函數(shù)f(x)的圖象;
(3)若a<0,畫出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=0,則(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)與f(x2)的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\left\{\begin{array}{l}{x-4,x≥11}\\{f[f(x+7)],x<11}\end{array}\right.$,求f(6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|$\frac{x-3}{x+2}$<0},B={x|x2+2x>8},C={x|x2-ax+2a<0},若A∩B∩C≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案